Unconstrained optimization (characterization of optimal solution, gradient method, convergence analysis, Newton method, local convergence analysis).
Convex optimization with constraints (Farkas Lemma, Fritz John conditions, conditions Karush-Kuhn-Tucker (KKT) - examples).
Duality, Lagrangian, dual function, weak and strong duality – examples of dual problems.
Convex optimization with affine equality constraints (Newton method, primal-dual).
General convex optimization problems (barrier function, interior point method, primal-dual).
Alternating Direction Method of Multipliers
Introduction to distributed optimization
The Lab part of the course consists of four (4) projects which contain theoretical questions as well as matlab (or octave) code implementing selected optimization algorithms.
Grading;
Final Exam 6/10,
Projects (4/10).
Our main source will be the textbook
S. Boyd and L. Vandenberghe. "Convex Optimization," Cambridge University Press, 2004 (I uploaded the textbook in the "Εγγραφα" section).
See also the video series of recent Boy's lectures
A. Beck, Introduction to nonlinear optimization (2nd edition), SIAM.
Practical Data Science and Applications (MLDS102)
Nikos Giatrakos
Practical Data Science and Applications
MLDS102 - Nikos Giatrakos
Fundamentals of programming with Python and Python libraries for data manipulation. This is a hands-on course with a substantial amount of project work. No prior knowledge of Python is needed, but a basic understanding of programming concepts (variables, types, functions, files, etc) as well as computer use skills are required.
Part I: We will cover principles of object-oriented and structured programming, data representation via Python data structures, and fundamental data manipulation in idiomatic Python. Then, we will examine Python libraries for scientific computing (numpy and scipy).
Part II: We will learn to work with basic software development technologies (version control, package installation, package publication) and interactive environments. A practical introduction to Jupyter, pandas, scikit-learn and matplotlib will be followed by students demonstrating their use on introductory data analysis tasks.
Part III: An introduction to high-performance computing techniques via Python, including dask and tensorflow will be given. Students will be asked to implement all stages of a scientific workflow, demonstrating the skills acquired in the previous stages of the course.
Requirements: basic knowledge of programming in any programming language
Good but only partially relevant: https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html
Probability Theory & Introduction to Machine Learning (MLDS101 - TEL 901)
ΜΙΧΑΗΛ ΠΑΤΕΡΑΚΗΣ και ΓΕΩΡΓΙΟΣ ΚΑΡΥΣΤΙΝΟΣ
Probability Theory & Introduction to Machine Learning
MLDS101 - TEL 901 - ΜΙΧΑΗΛ ΠΑΤΕΡΑΚΗΣ και ΓΕΩΡΓΙΟΣ ΚΑΡΥΣΤΙΝΟΣ
Probability spaces, Random Variables and Stochastic Processes, Conditional Probability, Expected Values, Conditional Expectations, Independence of Random Variables. The Bernoulli Stochastic Process and Sums of Independent Random Variables: Bernoulli Process, Number of Successes, Times of Successes, Sums of Independent Random Variables, Chebyshev Inequality, Weak and Strong Law of Large Numbers, Central Limit Theorem. BasicsofInferenceandTesting(includingmaximumlikelihoodestimates,hypothesistesting, likelihood ratio test, and Bayesian inference), Linear regression models, Generalized linear regression models(includinglogisticregression),NonparametricRegression(includingGaussianProcess regression), Tree methods and Forests, Bagging and Ensemble methods, Statistical Computing.
Probability Theory & Introduction to Machine Learning - Fall 2024 (TEL 901)
ΓΕΩΡΓΙΟΣ ΚΑΡΥΣΤΙΝΟΣ
Probability Theory & Introduction to Machine Learning - Fall 2024
TEL 901 - ΓΕΩΡΓΙΟΣ ΚΑΡΥΣΤΙΝΟΣ
Το μάθημα δεν διαθέτει περιγραφή
Programming and Database Fundamentals (MLDS103-s)
Vasilis Samoladas
Programming and Database Fundamentals
MLDS103-s - Vasilis Samoladas
Database design and use of databases in applications. Design and implementation issues in databases. Design and implementation of relational systems. Design and implementation of object–oriented systems. XML databases. Query optimization in databases. Optimizing the performance of applications with design at the physical level, cost optimization for transactions, recovery. Distributed databases. Data Warehousing. Data mining on databases. Continuous Databases. Stream Processing. Big Data Systems and Frameworks. SQL.
Quantum Information and Quantum Estimation ΜΤΗ905 Winter term 2025 // Κβαντική Πληροφορία και Κβαντική Εκτιμητική / Χειμερινό εξάμηνο 2024-2025
MLDS115 - Demosthenes Ellinas
State vector Hilbert spaces, Qubit. Theory of quantum measurements, orthonormal complete bases, projectors, positive operator-valued probability measures (POVM). Density matrix, spectral decomposition, convex decomposition. Bloch sphere and vector. Introduction to quantum entanglement. Quantum correlations, Biorthogonal analysis, Schmidt numbers. Measures of entanglement, Quantum entropy measures. Quantum information. The Schroedinger–HJW theorem. Quantum channels (single qubit, collective channels). Quantum algorithms, Computational and communicational algorithms. The Deutsch–Jozsa algorithm. Quantum teleportation algorithm for states, gates, channels. The LOCC protocol. Quantum walks (QW). Coin-walker Hilbert spaces. The QW channel maps. Quadratic speed ups. Introduction to the Helstrom-Holevo quantum estimation theory. Cramer-Rao bound and quantum Fisher information. Optimal measurements and the symmetric logarithmic derivative operator. Phase estimation problems of quantum states. Temperature estimation and qubit thermometry for closed and open quantum systems.
Χώροι Hilbert καταστατικών διανυσμάτων - Qubit. Θεωρία κβαντικών μετρήσεων, ορθοκανονικές βάσεις, προβολικοί τελεστές. Θετικά τελεστικά μέτρα πιθανότητας POVM. Πίνακας πυκνότητας, φασματική ανάλυση, κυρτοί συνδυασμοί. Σφαίρα κα διάνυσμα Bloch. Εισαγωγή στο κβαντικό εναγκαλισμό. Κβαντικές συσχετίσεις - Διορθογώνια ανάλυση - Αριθμοί Schmidt. Μετρήσεις εναγκαλισμού- Μέτρα κβαντικής εντροπίας. Κβαντική Πληροφορία. Το θεώρημα Schroedinger -HJW. Κβαντικά κανάλια (1-qubit, συλλογικά κανάλια). Κβαντικοί αλγόριθμοι - Αλγόριθμοι υπολογισμών και επικοινωνίας. Ο αλγόριθμος Deutsch--Jozsa. Κβαντική τηλεμεταφορά καταστάσεων, πυλών, καναλιών. Το πρωτόκολο LOCC. Κβαντικοί περίπατοι (QW). Χώροι Hilbert νομίσματος-περιπατητή. Κανάλια τύπου QW. Τετραγωνικές επιταχύνσεις. Εισαγωγή στη θεωρία κβαντικής εκτιμητικής Helstrom-Holevo. Φράγμα Cramér-Rao και κβαντική πληροφορία Fisher. Βέλτιστες μετρήσεις και ο συμμετρικός τελεστής λογαριθμικής παραγώγου. Προβλήματα εκτιμητικής γωνίας φάσης σε κβαντικές καταστάσεις. Εκτιμητική θερμοκρασίας και θερμιδομετρία qubit για κλειστά και ανοιχτά κβαντικά συστήματα.