
 1 

Basic Concepts in Matlab 

Michael G. Kay 
Fitts Dept. of Industrial and Systems Engineering 

North Carolina State University 
Raleigh, NC  27695-7906, USA 

kay@ncsu.edu 

January 2008

Contents 

1. The Matlab Environment 1 
2. Creating Arrays 1 
3. Saving and Loading Variables 2 
4. Selecting Array Elements 3 
5. Changing and Deleting Array Elements 3 
6. Manipulating Arrays 4 
7. Multiplication and Addition 4 
8. Functions and Scripts 6 
9. Anonymous Functions 8 
10. Example: Minimum-Distance Location 8 
11. Logical Expressions 9 
12. Cell Arrays, Structures, and N-D Arrays 9 
13. Control Structures 11 
14. Example: Random Walk Simulation 13 
15. Logical vs. Index Arrays 13 
16. Example: The Monti Carlo Method 14 
17. Full vs. Sparse Matrices 16 
18. Inserting and Extracting Array Elements 16 
19. List of Functions Used 16 
 

1. The Matlab Environment 
After launching Matlab (R2007a), a multi-panel window 
appears containing Command Window, Workspace, 
Current Directory, and Command History panels, among 
others. This, along with windows for the Editor/Debugger, 
Array Editor, Help Browser, etc., that can be invoked as 
needed, is the Matlab environment. 

Matlab has an extensive set of built-in functions as well as 
additional toolboxes that consist of functions related to 
more specialized topics like fuzzy logic, neural networks, 
signal processing, etc. It can be used in two different ways: 
as a traditional programming environment and as an 
interactive calculator. In calculator mode, the built-in and 
toolbox functions provide a convenient means of 
performing one-off calculations and graphical plotting; in 
programming mode, it provides a programming environment 

(editor, debugger, and profiler) that enables the user to write 
their own functions and scripts. 

Expressions consisting of operators and functions that 
operate on variables are executed at the command-line 
prompt >> in the Command Window. All of the variables 
that are created are stored in the workspace and are visible 
in the Workspace panel. 

Information about any function or toolbox is available via 
the command-line help function (or from the doc 
command that provides the information in the Help 
Browser): 

help sum 

In Matlab, everything that can be done using the GUI 
interface (e.g., plotting) can also be accomplished using a 
command-line equivalent. The command-line equivalent is 
useful because it can be placed into scripts that can be 
executed automatically. 

2. Creating Arrays 
The basic data structure in Matlab is the two-dimensional 
array. Array variables can be scalars, vectors, or matrices: 

 • Scalar n = 1 is represented as a 1 × 1 array 

 • Vector a = [1 2 3] is a 1 × 3 array 

 • Matrix ⎡ ⎤= ⎢ ⎥⎣ ⎦

1 2 3 4
5 6 7 8A  is a 2 × 4 array. 

Arrays can be created on the command line as follows: 

n = 1   

n = 

     1   

a = [1 2 3]   

a = 



SAVING AND LOADING VARIABLES 

 2

     1     2     3   

A = [1 2 3 4; 5 6 7 8]   

A = 

     1     2     3     4 

     5     6     7     8   

In Matlab, the case of a variable matters; e.g., the arrays a 
and A are different variables. 

To recall the last command executed, press the up-arrow 
key (↑). To suppress the output from a command, end an 
expression with a semicolon (;): 

A = [1 2 3 4; 5 6 7 8];   

An empty array is considered a 0 × 0 matrix: 

a = []   

a = 

     []   

The following operators and functions can be used to 
automatically create basic structured arrays: 

a = 1:5   

a = 

     1     2     3     4     5   

a = 1:2:5   

a = 

     1     3     5   

a = 10:-2:1   

a = 

    10     8     6     4     2   

a = ones(1,5)   

a = 

     1     1     1     1     1   

a = ones(5,1)   

a = 

     1 

     1 

     1 

     1 

     1   

a = zeros(1,5)   

a = 

     0     0     0     0     0   

The rand function generates random numbers between 0 
and 1. (Each time it is run, it generates different numbers.) 

a = rand(1,3)   

a = 

    0.6086    0.2497    0.8154   

b = rand(1,3)   

b = 

    0.2618    0.4760    0.3661   

A random permutation of the integers 1 to n can be 
generates using the randperm(n) function: 

randperm(5)   

ans = 

     1     3     4     5     2   

To create a 3 × 3 identity matrix: 

eye(3)   

ans = 

     1     0     0 

     0     1     0 

     0     0     1   

The variable ans is used as a default name for any 
expression that is not assigned to a variable. 

3. Saving and Loading Variables 
The variables currently in the workspace are visible in the 
Workspace panel, or through the whos command: 

whos   

  Name   Size     Bytes  Class 

  A      2x4         64  double array 

  a      1x3         24  double array 

  ans    3x3         72  double array 

  b      1x3         24  double array 

  n      1x1          8  double array 

Grand total is 24 elements using 192 
bytes   

To save arrays A and a to a file: 

save myvar A a   

Data files in Matlab have the extension .mat, so the file 
myvar.mat would be saved in the current directory (see 
Current Directory panel). To remove the variables from the 
workspace: 



  SELECTING ARRAY ELEMENTS 

 3

clear   

whos   

To restore the variables: 

load myvar   

Data files can also be saved and loaded using the File menu. 

4. Selecting Array Elements 
In Matlab, index arrays inside of parenthesis are used to 
select elements of an array. The colon operator is used to 
select an entire row or column. 

A   

A = 

     1     2     3     4 

     5     6     7     8   

A(:,:)   

ans = 

     1     2     3     4 

     5     6     7     8   

A(1,2)   

ans = 

     2   

A(1,:)   

ans = 

     1     2     3     4   

A(:,1)  

ans = 

     1 

     5   

A(:,[1 3])   

ans = 

     1     3 

     5     7   

The vector [1 3] is an index array, where each element 
corresponds to a column index number of the original 
matrix A. 

The keyword end can be used to indicate the last row or 
column: 

A(:,end)   

ans = 

     4 

     8   

A(:,end-1)   

ans = 

     3 

     7   

The selected portion of the one array can be assigned to a 
new array: 

B = A(:,3:end)   

B = 

     3     4 

     7     8   

To select the elements along the main diagonal: 

diag(B)   

ans = 

     3 

     8   

5. Changing and Deleting Array Elements 
In calculator mode, the easiest way to change the elements 
of an array is to double click on the array’s name in the 
Workspace panel to launch the Array Editor, which allows 
manual editing of the array. (The editor can also be used to 
create an array by first generating an array of zeros at the 
command line and using the editor to fill in the nonzero 
values of the array.) 

In programming mode, elements can be changed by 
selecting a portion of an array as the left-hand-side target of 
an assignment statement: 

a = 1:5   

a = 

     1     2     3     4     5   

a(2) = 6   

a = 

     1     6     3     4     5   

a([1 3]) = 0   

a = 

     0     6     0     4     5   

a([1 3]) = [7 8]   

a = 

     7     6     8     4     5   



MANIPULATING ARRAYS 

 4

A(1,2) = 100   

A = 

     1   100     3     4 

     5     6     7     8   

To delete selected elements of a vector: 

a(3) = []   

a = 

     7     6     4     5   

a([1 4]) = []   

a = 

     6     4   

A row or column of a matrix can be deleted by assigning it 
to an empty array: 

A(:,2) = []   

A = 

     1     3     4 

     5     7     8   

6. Manipulating Arrays 
The following operators and functions can be used to 
manipulate arrays: 

A   

A = 

     1     3     4 

     5     7     8   

A'   (Transpose) 

ans = 

     1     5 

     3     7 

     4     8   

fliplr(A)   (Flip left/right) 

ans = 

     4     3     1 

     8     7     5   

flipud(A)   (Flip up/down) 

ans = 

     5     7     8 

     1     3     4   

[A B]   (Concatenate matrices) 

ans = 

     1     3     4     3     4 

     5     7     8     7     8   

[A [10 20]'; 30:10:60]   

ans = 

     1     3     4    10 

     5     7     8    20 

    30    40    50    60   

A(:)   (Convert matrix to column vector) 

ans = 

     1 

     5 

     3 

     7 

     4 

     8   

A = A(:)'   (Convert matrix to row vector) 

A = 

     1     5     3     7     4     8   

A = reshape(A,2,3)   (Convert back to matrix) 

A = 

     1     3     4 

     5     7     8   

7. Multiplication and Addition  

Scalars 
A scalar can be added to or multiplied with each element of 
an array; e.g., 

A   

A = 

     1     3     4 

     5     7     8   

2 + A   

ans = 

     3     5     6 

     7     9    10   



  MULTIPLICATION AND ADDITION 

 5

B = 2 * A   

B = 

     2     6     8 

    10    14    16 

Multiplication 
Matrices are multiplied together in two different ways:  
element-by-element multiplication, indicated by the use of a 
dot (.) along with the operator, and matrix multiplication, 
where the inner dimensions of the matrices must be the 
same; i.e., 

 Element-by-element multiplication: × × ×∗ =.m n m n m nA B C  

 Matrix multiplication: × × ×∗ =m n n p m pA B C  

C = A .* B   (2×3 .* 2×3 = 2×3) 

C = 

     2    18    32 

    50    98   128   

A * B   (Error: 2×3 * 2×3 ≠ 2×3) 

??? Error using ==> * 

Inner matrix dimensions must agree.   

C = A * B'   (2×3 * 3×2 = 2×2) 

C = 

    52   116 

   116   276   

C = A' * B   (3×2 * 2×3 = 3×3) 

C = 

    52    76    88 

    76   116   136 

    88   136   160   

a = 1:3   

a = 

     1     2     3   

a * a'   (1×3 * 3×1 = 1×1) 

ans = 

    14   

A * a'   (2×3 * 3×1 = 2×1) 

ans = 

    19 

    43   

Division (./) and power (.^) operators can also be 
preformed element by element. 

Addition 
Matrices are added together in Matlab element by element; 
thus, each matrix must be the same size; i.e., 

 Addition: × × ×+ =m n m n m nA B C  

C = A + B   

C = 

     3     9    12 

    15    21    24   

To add vector a to each row of A, a can be converted into a 
matrix with the same dimensions as A. This can be 
accomplished in several different ways: 

ones(2,1) * a   (Matrix multiplication) 

ans = 

     1     2     3 

     1     2     3   

ones(2,1) * a + A   

ans = 

     2     5     7 

     6     9    11   

a(ones(2,1),:)   (Tony’s Trick) 

ans = 

     1     2     3 

     1     2     3   

repmat(a,2,1)   (Replicate array) 

ans = 

     1     2     3 

     1     2     3   

Using repmat is the fastest approach when a is a scalar, 
while Tony’s Trick is not possible if a does not yet exist and 
is being created in the expression for the first time. 

Summation 
The elements of a single array can be added together using 
the sum and cumsum functions:  

a = 1:5   

a = 



FUNCTIONS AND SCRIPTS 

 6

     1     2     3     4     5   

sum(a)   (Array summation) 

ans = 

    15   

cumsum(a)   (Cumulative summation) 

ans = 

     1     3     6    10    15   

By default, Matlab is column oriented; thus, for matrices, 
summation is performed along each column (the 1st 
dimension) unless summation along each row (the 2nd 
dimension) is explicitly specified: 

A   

A = 

     1     3     4 

     5     7     8   

sum(A)   

ans = 

     6    10    12   

sum(A,2)   (Sum along rows) 

ans = 

     8 

    20   

sum(A,1)   (Sum along columns) 

ans = 

     6    10    12   

sum(sum(A))   (Sum entire matrix) 

ans = 

    28   

Forcing column summation: Even if the default column 
summation is desired, it is useful (in programming mode) to 
explicitly specify this in case the matrix has only a single 
row, in which case it would be treated as a vector and sum 
to a single scalar value (an error): 

A = A(1,:)   (Convert A to single-row matrix) 

A = 

     1     3     4   

sum(A)   (Incorrect) 

ans = 

     8   

sum(A, 1)   (Correct) 

ans = 

     1     3     4   

8. Functions and Scripts 
Functions and scripts in Matlab are just text files with a .m 
extension. User-defined functions can be used to extend the 
capabilities of Matlab beyond its basic functions. A user-
defined function is treated just like any other function. 
Scripts are sequences of expressions that are automatically 
executed instead of being manually executed one at a time at 
the command-line. A scripts uses variables in the (base) 
workspace, while each function has its own (local) 
workspace for its variables that is isolated from other 
workspaces. Functions communicate only through their 
input and output arguments. A function is distinguished 
from a script by placing the keyword function as the first 
term of the first line in the file. 

Although developing a set of functions to solve a particular 
problem is at the heart of using Matlab in the programming 
mode, the easiest way to create a function is to do it in an 
incremental, calculator mode by writing each line at the 
command-line, executing it, and, if it works, copying it to 
the function’s text file. 

Example: Given a 2-D point x and m other 2-D points in 
P, create a function mydist.m to determine the Euclidean 
(i.e., straight-line) distance d from x to each of the m points 
in P: 

 

[ ]

( ) ( )

( ) ( )

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

⎡ ⎤− + −⎢ ⎥
⎢ ⎥=
⎢ ⎥

− + −⎢ ⎥⎣ ⎦

1,1 1,2

1 2

,1 ,2

2 2
1 1,1 2 1,2

2 2
1 ,1 2 ,2

,
m m

m m

p p
x x

p p

x p x p

x p x p

x P

d

 

The best way to start is to create some example data for 
which you know the correct answer: 



  FUNCTIONS AND SCRIPTS 

 7

1 3 6

1

5

2
3

5
1 2

3

x

 
x = [3 1];   

P = [1 1; 6 1; 6 5]    

P = 

     1     1 

     6     1 

     6     5   

The first step is to subtract x from each row in P: 

ones(3,1) * x   

ans = 

     3     1 

     3     1 

     3     1   

ones(3,1)*x - P   

ans = 

     2     0 

    -3     0 

    -3    -4   

Square each element of the result: 

(ones(3,1)*x - P) .^ 2   

ans = 

     4     0 

     9     0 

     9    16   

Add the elements in each row: 

sum((ones(3,1)*x - P).^2, 2)   

ans = 

     4 

     9 

    25   

Then take the square root and assign the result to d: 

d = sqrt(sum((ones(3,1)*x - P).^2,2))   

d = 

     2 

     3 

     5   

The M-File Editor can be used to create the text file for the 
function mydist. Either select New, M-File from the File 
menu, or 

edit mydist   

where the editor should appear. Type the following two 
lines (adding a semicolon to the end of the command-line 
expression to suppress output from inside the function): 

function d = mydist(x,P) 

d = sqrt(sum((ones(3,1)*x - P).^2,2)); 

Save the file, then check to see if Matlab can find the file by 
using the type command to print the function at the 
command line, and then check to see that it works as 
desired: 

type mydist   

function d = mydist(x,P) 

d = sqrt(sum((ones(3,1)*x - P).^2,2));   

d = mydist(x,P)   

d = 

     2 

     3 

     5   

As it is written, the function will work for points of any 
dimension, not just 2-D points. For n-dimensional points, x 
would be a n-element vector and P a m × n matrix; e.g., for 
4-D points: 

d = mydist([x x],[P P])   

d = 

    2.8284 

    4.2426 

    7.0711   

The only thing “hard-coded” in the function is m. The 
size function can be used inside the function to determine 
the number of rows (dimension 1) or columns (dimension 
2) in P: 



ANONYMOUS FUNCTIONS 

 8

m = size(P,1)   

m = 

     3   

n = size(P,2)   

n = 

     2   

 
The last thing that should be added to the function is some 
help information. All of the first block of contiguous 
comment lines in a function is returned when the help 
command is executed for the function. Comment lines are 
indicated by an asterisk (%). 

To get help: 

help mydist   

 MYDIST Euclidean distance from x to P. 

     d = mydist(x,P) 

     x = n-element vector single point 

     P = m x n matrix of n points 

     d = m-element vector, where d(i) = 

         distance from x to P(i,:)   

The function mydist can now be used inside of any 
expression; e.g.,  

sumd = sum(mydist(x,P))   

sumd = 

    10   

If other people will be using your function, it is a good idea 
to include some error checking to make sure the values 
input to the function are correct; e.g., checking to make sure 
the points in x and P have the same dimension. 

9. Anonymous Functions 
Anonymous functions provide a means of creating simple 
functions without having to create M-files. Given 

x = [3 1];     

P = [1 1; 6 1; 6 5];      

the sum of the distances from x to each of the points in P 
can be determined by creating a function handle sumMydist 
to an anonymous function: 

sumMydist = @() sum(mydist(x,P));  

sumMydist   

sumMydist =  

    @() sum(mydist(x,P))    

sumMydist()   

ans = 

    10   

The values of x and P are fixed at the time sumMydist is 
created. To make it possible to use different values for x: 

sumMydist = @(x) sum(mydist(x,P));   

sumMydist([6 1])  

ans = 

     9   

sumMydist([4 3])   

ans = 

    9.2624   

10. Example: Minimum-Distance Location 
Anonymous functions can be used as input arguments to 
other functions. For example, fminsearch performs general-
purpose minimization. Starting from an initial location x0, it 
can be used to determine the location x that minimizes the 
sum of distances to each point in P: 

x0 = [0 0];   

[x,sumd] = fminsearch(sumMydist,x0)   

x = 

    5.0895    1.9664 

sumd = 

    8.6972   

For this particular location problem, any initial location can 
be used to find the optimal location because the objective is 
convex: 

[x,sumd] = fminsearch(sumMydist,[10 5])   



  LOGICAL EXPRESSIONS 

 9

x = 

    5.0895    1.9663 

sumd = 

    8.6972   

For many (non-convex) problems, different initial starting 
values will result in different (locally optimal) solutions. 

11. Logical Expressions 
A logical array of 1 (true) and 0 (false) values is returned as a 
result of applying logical operators to arrays; e.g., 

a = [4 0 -2 7 0]   

a = 

     4     0    -2     7     0   

a > 0   (Greater than) 

ans = 

     1     0     0     1     0   

a == 7  (Equal to) 

ans = 

     0     0     0     1     0   

a ~= 0   (Not equal to) 

ans = 

     1     0     1     1     0   

(a >= 0) & (a <= 4)   (Logical AND) 

ans = 

     1     1     0     0     1   

(a < 0) | (a > 4)   (Logical OR) 

ans = 

     0     0     1     1     0   

~((a < 0) | (a > 4))   (Logical NOT) 

ans = 

     1     1     0     0     1   

A logical array can be used just like an index array to select 
and change the elements of an array; e.g., 

a(a > 0)   

ans = 

     4     7   

a(a == 7) = 8   

a = 

     4     0    -2     8     0   

a(a ~= 0) = a(a ~= 0) + 1   

a = 

     5     0    -1     9     0   

12. Cell Arrays, Structures, and N-D Arrays 

Cell Arrays 
A cell array is a generalization of the basic array in Matlab 
that can have as its elements any type of Matlab data 
structure. Curly braces, { }, are used to distinguish a cell 
array from a basic array. 

Unlike a regular matrix, a cell array can be used to store 
rows of different lengths: 

c = {[10 20 30],[40],[50 60]}   

c =  

   [1x3 double]    [40]   [1x2 double]   

The individual elements in the cell array are each a row 
vector that can be accessed as follows: 

c{1}   

ans = 

     1     2     3   

To access the elements within each row: 

c{1}(1)   

ans = 

    10   

To add an element to the end of the first row: 

c{1}(end+1) = 35   

c =  

   [1x4 double]    [40]   [1x2 double]   

c{1}   

ans = 

    10    20    30    35   

To add another row to the end of the cell array: 

c(end+1) = {1:2:10}   

c =  

   [1x4 double]    [40]   [1x2 double]    
[1x5 double]   

c{end}   

ans = 

     1     3     5     7     9   



CELL ARRAYS, STRUCTURES, AND N-D ARRAYS 

 10

A common use for cell arrays is to store text strings: 

s = {'Miami','Detroit','Boston'}   

s =  

    'Miami'    'Detroit'    'Boston'   

Some functions can accept a cell array as input: 

s = sort(s)   

s =  

    'Boston'    'Detroit'    'Miami'   

A cell array can be used to store any type of data, including 
other cell arrays. One use of a cell array is to store all of the 
input arguments for a function: 

xP = {x, P}   

xP =  

    [1x2 double]    [3x2 double]   

The arguments can then be passed to a function by 
generating a comma-separated list from the cell array: 

d = mydist(xP{:})   

d = 

     2 

     3 

     5   

Cell arrays of can be created using the cell function: 

c = cell(1,3)   

c =  

     []     []     []   

Non-empty values can then be assigned to each element 
using a FOR Loop (see Section 13 below). 

A cell array can be both created and assigned non-empty 
values by using the deal function: 

[c2{1:3}] = deal(0)   

c2 =  

    [0]    [0]    [0]   

[c3{1:3}] = deal(1,2,3)   

c3 =  

    [1]    [2]    [3]   

Structures 
Structures are used to group together related information. 
Each element of a structure is a field: 

s.Name = 'Mike'   

s =  

    Name: 'Mike'   

s.Age = 44   

s =  

    Name: 'Mike' 

     Age: 44   

Structures can be combines into structure arrays: 

s(2).Name = 'Bill'   

s =  

1x2 struct array with fields: 

    Name 

    Age   

s(2).Age = 40;   

s(2)   

ans =  

    Name: 'Bill' 

     Age: 40   

s.Name   

ans = 

Mike 

ans = 

Bill   

An alternate way to construct a structure array is to use the 
struct function: 

s = 
struct('Name',{'Mike','Bill'},'Age',{44,40}) 

s =  

1x2 struct array with fields: 

    Name 

    Age   

When needed, the elements in each field in the array can be 
assigned to separate arrays: 

names = {s.Name}   

names =  

    'Mike'    'Bill'   

ages = [s.Age]   

ages = 

    44    40   



  CONTROL STRUCTURES 

 11

An alternate way to do the same thing that is sometimes 
more efficient is to use a single structure instead of an array 
of structures and use an array for each field of the structure: 

t.Name = {'Mike','Bill'}   

t =  

    Name: {'Mike'  'Bill'}   

t.Age = [44 40]   

t =  

    Name: {'Mike'  'Bill'} 

     Age: [44 40]   

N-D Arrays 
Multidimensional, or N-D, arrays extend the basic 2-D array 
used in Matlab. N-D arrays cannot be stored as sparse 
arrays, so they should only be used for dense arrays. N-D 
array can be created by extending a 2-D array or by directly 
creating the array using functions like zeros and ones: 

D3 = [1 2 3; 4 5 6]   

D3 = 

     1     2     3 

     4     5     6   

D3(:,:,2) = [7 8 9; 10 11 12]   

D3(:,:,1) = 

     1     2     3 

     4     5     6 

D3(:,:,2) = 

     7     8     9 

    10    11    12   

To access individual elements and cross-sections: 

D3(1,3,2)   

ans = 

     9   

D(:,1,:)   

ans(:,:,1) = 

     1 

     4 

ans(:,:,2) = 

     7 

    10   

To convert the 3-D answer to a 2-D array: 

D2 = squeeze(D(:,1,:))   

D2 = 

     1     7 

     4    10   

13. Control Structures 
In Matlab, FOR loops iterate over the columns of an array, 
and logical expressions are used for conditional evaluation 
in IF statements and WHILE loops. 

FOR Loop 
for i = 1:3 

   i 

end   

i = 

     1 

i = 

     2 

i = 

     3   

for i = 5:-2:1, i, end   

i = 

     5 

i = 

     3 

i = 

     1   

Any type of array can be used; e.g., a character array: 

chararray = 'abc'   

 

chararray = 

abc   

for i = chararray 

   i 

end   

i = 

a 

i = 

b 



CONTROL STRUCTURES 

 12

i = 

c   

Because any type of array can be used in a FOR loop, using 
FOR loops can greatly slow down the execution speed of 
Matlab as compared to the equivalent array operation 
(although FOR loops with only scalar arithmetic inside have 
been optimized in Release 13 of Matlab so that there is no 
performance penalty). 

Most of the standard arithmetic operations and functions in 
Matlab cannot be directly applied to an entire cell array; 
instead, a FOR loop can used to apply the operation or 
function to each element of the cell array: 

c = {[10 20 30],[40],[50 60]}   

c =  

    [1x3 double]    [40]   [1x2 double]   

c = c + 1   

??? Error using ==> + 

Function '+' is not defined for values 
of class 'cell'.   

for i = 1:length(c), c{i} = c{i} + 1; 
end   

The function length is equal to max(size(c)). To 
see the contents of each element in cell array: 

c{:}   

ans = 

    11    21    31 

ans = 

    41 

ans = 

    51    61   

IF Statement 
n = 3;   

if n > 0 

   disp('Positive value.') 

elseif n < 0 

   disp('Negative value.') 

else 

   disp('Zero.') 

end   

Positive value.   

WHILE Loop 
while n > 0 

   n = n - 1 

end   

n = 

     2 

n = 

     1 

n = 

     0   

DO-WHILE Loop 
done = 0; 

while ~done 

   n = n + 1 

   if n >= 3, done = 1; end 

end   

n = 

     1 

n = 

     2 

n = 

     3   

The DO-WHILE loop is used to ensure that the statements 
inside the loop are evaluated at least once even if the logical 
expression is not true. 

The logical expression in a conditional statement must 
evaluate to a single logical scalar value. To convert a logical 
vector to a scalar, the functions any and all can be used: 

a = [5 0 -1 9 0];    

a > 0   

ans = 

     1     0     0     1     0   

any(a > 0)   

ans = 

     1   

all(a > 0)   

ans = 

     0   



  EXAMPLE: RANDOM WALK SIMULATION 

 13

14. Example: Random Walk Simulation 
The following example simulates a random walk. Starting 
from the origin at 0, there is a 50–50 chance that the next 
step is up one unit of distance (+1) or down one unit of 
distance (–1). The vector d represents the cumulative 
distance from the origin at each step: 

Start by using only 5 steps (and, to get the same random 
numbers as show below, the state of the random number 
generator can first be set to some arbitrary number like 
123). 

rand('state',123)   

s = rand(1,5)   

s = 

    0.0697    0.2332    0.7374    
0.7585    0.6368   

s > 0.5   

ans = 

     0     0     1     1     1   

(s > 0.5)*2   

ans = 

     0     0     2     2     2   

((s > 0.5)*2) - 1   

ans = 

    -1    -1     1     1     1   

d = cumsum(((s > 0.5)*2) - 1)   

d = 

    -1    -2    -1     0     1   

Now increase to 100 steps (and use semicolon so output is 
suppressed): 

s = rand(1,100);   

d = cumsum(((s > 0.5)*2) - 1);    

plot(d)   

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

 
Multiple runs of the simulation can be used to verify the 
theoretical estimate of the expected distance from the origin 
after t steps, where d(t) is the last element of d: 

 
π

⎡ ⎤ →⎣ ⎦
2( ) td tE  

A FOR-loop can be used iterate through 100 runs of a 
1,000 step random walk: 

for i = 1:100 

 d = cumsum(((rand(1,1000)>0.5)*2)-1); 

 dt(i) = d(end); 

end   

mean(abs(dt))   (Sample mean) 

ans = 

   24.2200   

This compares with the theoretical estimate: 

 
π

=
2(1, 000)

25.2313  

15. Logical vs. Index Arrays 
Logical arrays and index arrays provide alternative means of 
selecting and changing the elements of an array. The find 
function converts a logical array into an index array: 

a   

a = 

     5     0    -1     9     0   

ispos = a > 0   (Logical array) 

ispos = 



EXAMPLE: THE MONTI CARLO METHOD 

 14

     1     0     0     1     0   

a(ispos)   

ans = 

     5     9   

idxpos = find(a > 0)   (Index array) 

idxpos = 

     1     4   

a(idxpos)   

ans = 

     5     9   

Some functions return logical or index arrays: 

s = {'Miami','Detroit','Boston'};   

idxDetroit = strmatch('Detroit',s)   

idxDetroit = 

     2   

isDetroit = strcmpi('detroit',s)   

isDetroit = 

     0     1     0   

Although similar, the use of logical and index arrays have 
different advantages: 

Advantages of Logical Arrays 
 1. Direct addressing: It is easy to determine if individual 

elements of the target array satisfy the logical 
expression; e.g., a value of 1 (true) for ispos(4) 
directly determines that a(4) is positive, while it 
would be necessary to search through each element of 
idxpos to determine if 4 is an element of the array 
(i.e., any(idxpos == 4)). 

 2. Use of logical vs. set operators: When comparing multiple 
logical arrays, logical operators like & (AND), | (OR), 
and ~ (NOT) can be used instead of the more 
cumbersome set operator functions like intersect, 
union, and setdiff that are necessary if index 
arrays are combined. 

Advantages of Index Arrays 
 1. Order information: Unlike logical arrays, the order of the 

elements in an index array provides useful information; 
e.g., the index array idxa returned by the function 
sort indicates the sorted order of the original 
unsorted array a: 

a   

a = 

     5     0    -1     9     0   

[sa, idxa] = sort(a)   

sa = 

    -1     0     0     5     9 

idxa = 

     3     2     5     1     4   

 2. Duplicate values: An index array can have multiple 
elements with the same index value, allowing arrays to 
be easily manipulated; e.g., 

idx = [1 2 1];   

a(idx)   

ans = 

     5     0     5   

 3. Space-saving: If only a few elements of the target array 
are being considered, then an index array need only 
store these elements, instead of a logical array that is 
equal in size to the target array; e.g., the index array 
idxmina has only a single element: 

[mina, idxmina] = min(a)   

mina = 

    -1 

idxmina = 

     3   

16. Example: The Monti Carlo Method 
The Monti Carlo method is a general-purpose simulation 
technique that uses random numbers to estimate the 
solutions to problems that are too difficult to solve 
analytically or by using other, more specialized, 
approximation techniques. It differs from other types of 
simulation because it is used for static problems where time 
is not involved. 

In this example * , the value of pi will be estimated by 
determining the number m out of n points that fall within a 
unit circle (r = 1). The probability that a point (x, y) 
randomly generated inside a square is also inside the circle is 
equal to the ratio of area of the circle and the square: 

 π π
+ < = = = ≈

2
circle2 2

square
( 1)

4 4
A r mP x y
A n

 

                                                           
* Adapted from A. Csete, http://www.daimi.au.dk/~u951581/ 
pi/MonteCarlo/pi.MonteCarlo.html. 



  EXAMPLE: THE MONTI CARLO METHOD 

 15

Pi can then be estimated as π =
4m
n

. 

1

1

-1

-1

 
The Monti Carlo method can be implemented in Matlab as 
follows, starting with a small number of points (n = 3) while 
the code is being developed and then switching to a larger 
number to actually estimate pi (to get the same random 
numbers as show below, the state of the random number 
generator can first be set to some arbitrary number like 
123): 

rand('state',123)  

n = 3;   

XY = rand(n,2)   

XY = 

    0.0697    0.7585 

    0.2332    0.6368 

    0.7374    0.6129   

XY = XY * 2 - 1   

XY = 

   -0.8607    0.5171 

   -0.5335    0.2737 

    0.4749    0.2257   

isin = sum(XY .^ 2, 2) < 1   

isin = 

     0 

     1 

     1   

m = sum(isin)   

m = 

     2   

piestimate = 4 * m/n   

piestimate = 

    2.6667   

pi   

ans = 

    3.1416   

Now that it is working, n can be increased (along with 
adding semicolons to the end of statements) and the results 
plotted: 

n = 5000;   

XY = rand(n,2) * 2 - 1;   

isin = sum(XY .^ 2, 2) < 1;   

m = sum(isin)   

m = 

        3967   

piestimate = 4 * m/n   

piestimate = 

    3.1736   

pi   

ans = 

    3.1416   

To plot results: 

plot(XY(isin,1),XY(isin,2),'b.') 

axis equal   

 
The commands used in this example could be copied to the 
M-File Editor and saved as a script, e.g., montipi.m. The 
script could then be executed by typing montipi at the 
command prompt. 



FULL VS. SPARSE MATRICES 

 16

17. Full vs. Sparse Matrices 
In many applications, only a small number of the elements 
of a matrix will have nonzero values. For efficiency, these 
matrices can be stored as sparse matrices instead of as 
normal full matrices; e.g., 

A = [0 0 0 30; 10 0 20 0]   

A = 

     0     0     0    30 

    10     0    20     0   

sparse(A)   

ans = 

   (2,1)       10 

   (2,3)       20 

   (1,4)       30   

full(A)   

ans = 

     0     0     0    30 

    10     0    20     0   

18. Inserting and Extracting Array Elements 

Inserting Into a New Matrix 

The sparse function can be used to create a 2 × 3 matrix A 
with nonzero values A(1,4) = 30, A(2,1) = 10, and A(2,3) = 
20: 

A = sparse([1 2 2], [4 1 3], [30 10 
20], 2, 4)   

A = 

   (2,1)       10 

   (2,3)       20 

   (1,4)       30   

Inserting Into an Existing Matrix 

If a 2 × 3 matrix B exists, new values can be inserted into B 
by first creating a sparse matrix with the same size as B with 
nonzero values corresponding to the elements to be 
inserted in B; e.g., to insert the nonzero values of A into B: 

B = [1:4; 5:8]   

B = 

     1     2     3     4 

     5     6     7     8   

B(A ~= 0) = A(A ~= 0)   

B = 

     1     2     3    30 

    10     6    20     8   

Extracting From a Matrix 
The (1,4), (2,1), and (2,3) elements of B can be extracted to 
the vector b as follows: 

B([1 2 2],[4 1 3])   

ans = 

    30     1     3 

     8    10    20 

     8    10    20   

b = diag(B([1 2 2],[4 1 3]))   

b = 

    30 

    10 

    20   

19. List of Functions Used 
The following basic Matlab functions were used in this 
paper: 

deal length sort 

diag load sparse 

disp mean sqrt 

doc min squeeze 

eye ones strcmpi 

find rand strmatch 

fliplr randperm struct 

flipud repmat sum 

fminsearch reshape type 

full save whos 

help size zeros 

 

 

 

 


