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Abstract

In this paper we introduce the idea of snapshot queries
for energy efficient data acquisition in sensor networks.
Network nodes generate models of their surrounding envi-
ronment that are used for electing, using a localized algo-
rithm, a small set of representative nodes in the network.
These representative nodes constitute a network snapshot
and can be used to provide quick approximate answers to
user queries while reducing substantially the energy con-
sumption in the network. We present a detailed experimen-
tal study of our framework and algorithms, varying multiple
parameters like the available memory of the sensor nodes,
their transmission range, the network message loss etc. De-
pending on the configuration, snapshot queries provide a
reduction of up to 90% in the number of nodes that need to
participate in a user query.

1. Introduction

Sensor networks are used in a wide variety of monitor-
ing applications, ranging from habitat/environmental mon-
itoring to military surveillance and reconnaissance tasks.
Although today’s sensor nodes have relatively small pro-
cessing and storage capabilities, driven by the economy of
scale, it is already observed that both are increasing at a
rate similar to Moore’s law.1 At the same time, it is becom-
ing clear that intelligent management of network’s dynam-
ics in sensor networks is fundamental. This is because for
many applications, like sensors in a disaster area, nodes op-
erate unattended. Such systems must adapt to a wide variety
of challenges imposed by the uncontrolled environment in
which they operate. One of the major technical challenges
arises from the severe energy constraints met in these net-
works. Nodes are often thrown into hostile environments.
In such cases, nodes are powered by small batteries and re-
placing them is not an option.

As nodes become cheaper to manufacture and oper-
ate, one way of addressing these challenges is redundancy.

1http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt

In [2] the authors suggest throwing-in extra redundant nodes
to ensure network coverage in regions with non-uniform
communication density due to environmental dynamics.
In this paper we propose a more fundamental approach for
dealing with network dynamics in data driven applications.
Like [7] we take the position that nodes should be aware
of their environment, including network dynamics. Instead
of designing database applications that need to hassle with
low-level details, we promote the use of data-centric net-
works that allow transparent access to the collected mea-
surements in a unified way. When queried nodes fail, the
network should self-configure to use redundant stand-by
nodes. However, unlike [7] that assumes that any node in
the vicinity can replace the failed node, we promote a data-
driven approach in which a node can “represent” (replace)
another node in a query when their collected measurements
are similar, where similarity is expressed in some quantita-
tive way.

As an example, we consider the deployment of nodes
over a large terrain for the purpose of collecting and ana-
lyzing weather data like temperature, humidity etc. This
is a scenario where we expect a lot of correlations among
the collected measurements, especially among neighboring
nodes. However, in reality, it is difficult to predict what
are the real points (locations) of interest before actually de-
ploying sensor nodes over the terrain. In a localized mode
of operation, nodes can coordinate with their neighbors and
elect a small set of representative nodes among themselves.
This can be achieved using, for instance, a threshold value T
and have the nodes elect a local representative whose value
(measurement) is, on expectation, within T of their own.
Such a scenario has many advantages for data processing
and analysis.

� The location and values of the representative nodes pro-
vide a picture of the value distribution in the network.
One can extend this technique and use multiple threshold
values. Each set of representatives, compiled for a value
of T , is essentially a “snapshot” of the network at a dif-
ferent “resolution”, depending on T . What is important
is that, as we will show, these computations can be per-
formed in the network with only a small number (up to
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six) of exchanged messages among the nodes.

� The network snapshot can be used for answering user
queries in a more energy-efficient way. We call such
queries snapshot queries. Snapshot queries include both
aggregate queries as well as drill-through type of queries
where a small collection of nodes are requested to report
their individual measurements.

� An elected representative node can take over for another
node in the vicinity that may have failed or is temporar-
ily out of reach. Because selection of representatives is
quantitative (based on the value of T and the selected er-
ror metric as will be explained) this allows for a more
accurate computation than when representatives are se-
lected based only on proximity.

� A localized computation of representative nodes can re-
act quickly to changes in the network. For instance,
nodes (including the representatives) may fail at random.
It is important that the network can self-heal in the case
of node-failures or some other catastrophic events. In a
data-driven mode of operation, we are also interested in
changes in the behavior of a node. In such case the net-
work should re-configure and revise the selected repre-
sentatives, when necessary.

In our experiments we compare a network setup that an-
swers snapshot queries against a straightforward implemen-
tation that does not use representative nodes. We observe
that even-though some background messaging and process-
ing is required for the maintenance of the representative
nodes, the lifetime of the network is substantially extended
(see Figure 10) because most network nodes can stay idle
during a snapshot query. Depending on the query, he have
observed reduction of up to 90% in the number of nodes that
need to participate in a snapshot query, versus the number
of nodes that would be required otherwise.

Our contributions are summarized as follows

� We introduce a data-driven framework for dealing with
network dynamics in uncontrolled volatile environments.
We show how sensor nodes can maintain, using a local-
ized algorithm, a dynamic view of their environment in-
cluding other nodes in their vicinity.

� Nodes build compact models that capture the correla-
tions among their measurements and those of their neigh-
bors. These models are simple enough to be implemented
on low-end nodes and, as our experiments demonstrate,
work well for the applications of interest. For managing
the limited buffer space (in the range of a few hundred
bytes to a few Kbytes) alloted on a node for these models,
we introduce a model-aware cache manager that discov-
ers and augments those models that provide the higher
degree of accuracy.

� We introduce a new class of snapshot queries. These are
user queries that are willing to tolerate a small amount of
error, at the benefit of requiring far fewer network nodes
for their execution.

� We investigate the effects of various network properties
like the node’s transmission range, the network message
loss as well as parameters like the memory size of the
sensors, the correlation among measurements of differ-
ent sensors and the desirable error threshold. Our exper-
iments demonstrate that our techniques are very robust
and consistently provide substantial savings during snap-
shot queries.

The rest of the paper is organized as follows. In Section 2
we describe related work. Section 3 discusses some of the
properties of sensor networks and presents an overview of
our framework. In Section 4 we describe the data mod-
els built by a sensor for capturing its environment and we
present a model-aware cache manager for maintaining these
models. Section 5 describes a localized algorithm for elect-
ing and maintaining the set of representative nodes to be
used for snapshot queries. Section 6 contains the experi-
ments. Concluding remarks are given in Section 7.

2. Related Work

Directed diffusion, presented in [7], is a communication
model for describing localized algorithms in the context of
sensor networks. In the same paper, the authors present a
network configuration, using adaptive fidelity algorithms, in
which localized algorithms selectively turn off some sensors
to conserve system resources, when for instance high rate of
collisions is detected in the channel. As individual sensors
die, others in the vicinity take their place. Our framework
was motivated by these ideas but it differs in that it takes a
data-centric approach versus the network-centric viewpoint
of [7]. We exemplify the view of sensor nodes as data ac-
quisitional devices [12] and promote the use of data-centric
localized algorithms for self-configuring within a volatile
computing environment.

In database literature there is an on-going effort for re-
thinking data processing and optimization techniques in the
context of sensor networks. For instance, in-network data
aggregation [5, 11, 16, 17] uses a routing tree to partially
aggregate measurements on their way to their destination
and can reduce substantially the amount of data transmitted
by the nodes. The work of [5] allows approximate evalua-
tion of user aggregate queries in sensor networks while min-
imizing the number of messages exchanged among the sen-
sor nodes. Our techniques are more generic as they capture
both aggregate and drill-through queries and are orthogonal
to these optimizations. A related line of research deals with
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Symbol Definition

xi�t� Measurement of Node Ni at time t
�xi Estimation of xi by a node Nj , j �� i

T Threshold used in computation of representatives
N Total number of nodes in network
n� Number of nodes (representatives) in snapshot

Table 1. Symbols and their definition

decentralized algorithms for aggregate computations with
applications in P2P and sensor networks [1, 9].

Our framework also relates to the work in [10, 13, 14]
that study the tradeoff between precision and performance
when querying replicated, cached data but the underlying
foundation is different. The network snapshot we main-
tain is a result of both data dynamics (e.g. changes in data
distributions) as well as network dynamics (node failures,
changes in connectivity among nodes due to mobility, envi-
ronmental conditions etc).

In [6] a model-driven data acquisition framework is pro-
posed that uses a trained statistical model in order to limit
the number of sensor readings required to answer a posed
query with high confidence. While [6] uses a “global”
model to capture dependencies assuming a relatively sta-
ble network topology, our framework aims at capturing lo-
calized correlations in highly dynamic networks and should
scale better in networks consisting of hundreds or thousands
of nodes. Another difference is that we are not trying to fit
the data into a model but, similarly to [4], try to exploit
spatio-temporal correlations among readings from neigh-
boring nodes.

In [3] the authors propose the use of counting sketches
to cope with link failures during aggregate queries in sen-
sor databases. In principle, one can use sketches (differ-
ent from those in [3]) to maintain an approximate model of
the nodes. An important difference is that our snapshot
is maintained overtime, thus each measurement is a time-
series. Our models capture the time dimension by encoding
the correlations among the nodes. This is different that ap-
proximating the data values using e.g. sketches. As our
experiments demonstrate, we can capture trends with just a
few samples, while sketches would require continuous re-
broadcasting of values for updates, thus defeating the pur-
pose of reducing resource consumption in the network.

3. Overview

Table 1 describes the symbols we are using in our nota-
tion. For measurements, we often drop index t and use xi to
refer to the current value reported by node Ni. In order to
simplify the presentation, we assume that there is a single
measurement xi collected on every sensor node. In practice
there can be as many measurements as the number of sens-

ing elements installed on a node. Our framework will still
apply in such cases. The only necessary modification is the
addition of a measurement id during model computation
(see Section 4).

A sensor node Ni maintains a data model for capturing
the distribution of values of the measurements of its neigh-
bors. This is achieved by snooping (with a small probabil-
ity) values broadcast by its neighbor node Nj in response
to a query, or, as will be explained, by using periodic an-
nouncements sent by Nj . 2 One may devise different math-
ematical models, with varying degrees of complexity, for
this process. The modeling that is described later in this pa-
per has the following desirable characteristics, in the con-
text of sensor networks.

� It is simple both in terms of space and time complexity.
Our algorithms can operate when the available memory
for storing these models in the sensor is as small as a few
bytes.

� We do not make any particular assumption on the dis-
tribution of the data values collected by the sensors.
The only assumption made is that values of neighboring
nodes are to some extent correlated. This is true for many
applications of interest like collection of meteorological
data, acoustic data etc. Furthermore, by modeling these
correlations, we are able to capture trends (like periodic-
ity), with very few samples.

� The derived models can be optimized for different error
metrics like the sum-squared error (sse), relative error,
the maximum error of the approximation etc.

Using the data model it maintains, sensor node Ni pro-
vides an estimate �xj of the measurement of its neighbor
Nj . Given an error metric d�� and a threshold value T ,
node Ni can represent node Nj if d�xj � �xj� � T . Function
d�� is provided by the application. Some common choices
include (i) relative error: d�xj � �xj� �

jxj��xj j
max �s�jxj j�

, where
s � � is a sanity bound for the case xj=0, (ii) absolute
error: d�xj � �xj� � jxj � �xj j and (iii) sum-squared error:
d�xj � �xj� � �xj � �xj�

�.
Through a localized election process the nodes in the net-

work pick a set of representative nodes of size n�. Depend-
ing on the threshold value T , the error metric and the ac-
tual measurements on the sensors, n� can be significantly
smaller that N . An example of this process is demonstrated
in Figure 1 where the representatives for a simulated net-
work of 100 nodes are shown. Dark nodes in the Figure
are representative nodes. There are lines drawn from a node
Ni to a node Nj that Ni represents. Nodes with no lines
attached to them represent themselves (the default choice).

2We use the term “neighboring nodes” in a loose, dynamic sense, to
mean any node that can directly transmit to the node of interest. This
relationship is, in general, not symmetric.
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Figure 1. Example of Network Snapshot

An aggregate computation like SUM can be handled by
the representative nodes that will in-turn provide estimates
on the nodes Nj they represent using their models. An-
other scenario is to use the representative of a node on an
aggregate or direct query, when that node is out-of-reach
because of some unexpected technical problem or due to
severe energy constraints. Thus, query processing can take
advantage of the unambiguous data access provided by the
network. Of course, one can ignore the layer of represen-
tatives and access the sensors directly, at the penalty of (i)
draining more energy, since a lot more nodes will have be to
accessed for the same query and (ii) having to handle within
the application node failures, redundancy etc.

The selection of representatives is not static but is being
revised overtime in an adaptive fashion. An obvious cause
is the failure of a representative node. In other cases, the
model built by Ni to describe xj might get outdated or fail,
due to some unexpected change in the data distribution. In
either case, the network will self-heal using the following
simple protocol. Node Nj periodically sends a heart-beat
message to its representative Ni including its current mea-
surement. If Ni does not respond, or its estimate �xj for xj

is not accurate (d�xj � �xj� � T ) then Nj initiates a local re-
evaluation process inviting candidate representatives from
its neighborhood, leading to the selection of a new repre-
sentative node (that may be itself). This heart-beat message
is also used by Ni to fine-tune its model of Nj .

Under an unreliable communication protocol it is possi-
ble that this process may lead to spurious representatives.
For instance node Ni may never hear the messages sent by
node Nj due to an obstacle in their direct path. It may thus
assume that it still represents node Nj while the network
has elected another representative. This can be detected and

corrected by having time-stamps describing the time that a
node Ni was elected as the representative of Nj and us-
ing the latest representative based on these time-stamps. In
TinyOS nodes have an external clock that is used for syn-
chronization with their neighbors [11]. In lack of properly
synchronized clocks among the sensor nodes, one can use a
global counter like the epoch-id of a continuous query. This
filtering and self-correction is performed by the network,
transparently from the application.

3.1. Snapshot Queries

Recent proposals [11, 17] have suggested the use of SQL
for data acquisition and processing. The obvious advan-
tage of using a declarative language is greater flexibility
over hand-coded programs that are pre-installed at the sen-
sor nodes [12]. In addition embedded database systems like
TinyDB can provide energy-based query optimization be-
cause of their tight integration with the node’s operations.

Basic queries in sensor networks consist of a SELECT-
FROM-WHERE clause (supporting joins and aggregation).
For instance, in our running example of collecting weather
data a typical query may be

SELECT loc, temperature
FROM sensors
WHERE loc in SHOUTH_EAST_QUANDRANT
SAMPLE INTERVAL 1sec for 5min
USE SNAPSHOT

This is an example of a drill-through query, sam-
pling temperature readings every 1 second and lasting
5 minutes. For this example we assume that each
node has a unique location-id loc and that nodes are
location-aware, being able to process the spatial filter “in
SHOUTH EAST QUANDRANT”. Location can be ob-
tained using inexpensive GPS receivers embedded in the
nodes, or by proper coordination among the nodes, using
techniques like those proposed in [15]. Location is a signif-
icant attribute of a node in an unattended system. For many
applications like habitat monitoring, spatial filters may be
the most common predicate.

The new extension presented in the query above is the
USE SNAPSHOT clause, denoting that the query may be
answered by the representative set of nodes. Notice that
a node is aware of the location of the nodes it repre-
sents, as this information can be passed during the message-
exchange round of the protocol we present in Section 5. In
this schema, a node provides measurements for the above
snapshot query when (i) it is not represented and satisfies
the spatial predicate of the query or (ii) it represents another
node Nj satisfying the spatial predicate.

The advantage of providing the USE SNAPSHOT direc-
tive is that often a much smaller number of nodes will be
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involved in the processing of the query. A node that is be-
ing represented may still be asked to route messages for the
query. The probability of this happening can be reduced by
having the routing protocol favor paths through representa-
tive nodes. Notice that this is feasible, since representatives
are physically co-located with the nodes they represent.

An interesting extension is to have each snapshot query
define its own error threshold. A straightforward way to
handle this case is to start an election process (see Sec-
tion 5) for each such query. Since each election cycle
requires up to six messages per node (and usually a lot
less), this is a reasonable startup cost considering the sav-
ings for a long-running (continuous) query when executed
through the snapshot. The data models, described in Sec-
tion 4, will be shared among all running queries. Of course
some optimizations are possible in a multi query scenario.
For instance given queries Q�� Q�� � � � with error thresholds
T� � T� � � � � we can obtain a single set of representatives
(snapshot) for the most tight threshold T� and use them for
answering all other queries. We defer this discussion to the
full version of this paper.

4. Model Management

Each sensor Ni maintains a small cache containing past
measurements from its neighbors. These values are used
for building simple models of the correlations between their
measurements. We assume a limited amount of memory
available for maintaining this cache and any necessary val-
ues needed for bookkeeping (e.g. model parameters). Since
the purpose of the cache is to provide input for the models
built, we are employing a model-aware cache management
policy that aims at increasing the accuracy of these mod-
els. We will first describe the modeling used in more detail
and then present the cache admission and replacement algo-
rithms.

Modeling Correlations. In order to be as general as pos-
sible, we do not assume a particular distribution for the data
measurements but instead focus on the correlations among
neighboring nodes. Such correlations are the motivation of
using redundant nodes at the first place [2, 7].

Given n � � pairs of values for measurements xi�t�
and xj�t�: �xi�t��� xj�t���,. . . �xi�tn�� xj�tn�� we model
the values of xj�t� as a linear projection of the values of
xi�t�. Thus, �xj�t� � ai�j � xi�t� � bi�j . The computation
of parameters ai�j , bi�j depends on the error metric used.
A common choice is the sum-squared error (sse) of the ap-
proximation

P
��k�n��xj�tk� � xj�tk��

�. In that case, the
optimal values for these parameters are provided by the fol-
lowing Lemma.

Lemma 1 The optimal values for ai�j , bi�j that minimize
the sum squared error of the approximation �xj�t� � ai�j �

xi�t� � bi�j (for t in ft�� � � � � tng) are

b
�
i�j �

P
��k�n

xj�tk�� a
�
i�j �

P
��k�n

xi�tk�

n

and

a
�
i�j �

n
P

��k�n
xi�tk�xj�tk��

P
��k�n

xi�tk�
P

��k�n
xj�tk�

n
P

��k�n
x�i �tk�� �

P
��k�n

xi�tk���

Proof: We consider a set of n points P in the plane. In
particular P � f�xi�tk�� xj�tk��� k � �� � � � � ng. Let
y � a�x� b be a line in the plane. The sum-squared errorP

��k�n��xj�tk��xj�tk��
� of the approximation �xj�tk� �

a � xi�tk� � b is equal to the sum of squares of the dis-
tances of the points in P from the line. Thus, minimizing
the sse of the approximation is reduced to computing the
least squares regression line for P . The optimal values a�i�j
and b�i�j follow from standard regression theory.

In case xi�t� is constant (includes case n=1) the optimal

values are a�i�j � � and b�i�j �

P
��k�n

xj�tk�

n
.

There is a vast literature on linear regression that can be
of use for optimizing other error metrics such as relative or
absolute error [4]. For brevity, in what follows we assume
that the metric of interest is the sse.

Model-aware Cache Management. When a newer value
of xj is available the node stores it along with its current
measurement xi, if it is decided so by the cache admission
policy. For a particular neighbor Nj or Ni, the cache-line
for Nj (maintained by Ni) is a list of pairs of values of xi�t�
and xj�t� collected at the same time. (There are many ways
of optimizing representation of these lists that are outside
the scope of this discussion.) Thus,

cache line�Nj� � f�xi�t��� xj�t���� �xi�t��� xj�t���� � � �g

The number of pairs stored in a cache line will be de-
cided dynamically and, in general, will be different per
cache-line. Initially, when the cache is not full, new data
values are stored in the corresponding cache lines. If the
cache is full and a new measurement xj is given, we weigh
the gains of adding xj in the cache, against the penalty of
evicting a past measurement. We first list the actions we
consider and then show how to choose among them.

� Time-shift the cache-line for Nj: We can remove the
oldest pair �xi�t��� xj�t��� from cache line�Nj� and
add a new entry �xi�t�� xj�t�� (t=current time).

� Augment the cache-line for Nj: We may store the new
pair �xi�t�� xj�t�� in cache line�Nj� and remove the
oldest entry from another cache-line in order to keep the
total space constant.

� Leave as is: We reject the latest measurement
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Notice that victims are always chosen from the oldest
member of a cache-line. The reason for this is twofold: we
“force” the cache to gradually shift into newer observations
and, at the same time, we are able to update the cache in
linear time, as will be explained, instead of quadratic (had
we chosen to consider every stored pair for eviction).

We now show how to evaluate the individual choices.
For a cache-line c=f�xi�t��� xj�t���� �xi�t��� xj�t���� � � �g
the average sse of the model �xj�t� � a� xi�t� � b over the
values in c is

sse�c� a� b� �

P
tk��xi�tk��xj�tk���c

�xj�tk�� a� xi�tk�� b��

length�c�

where length�c� returns the number of pairs stored in the
cache line. If no model were available, then node Ni could
not provide an estimate for xj�tk�. The average sse of the
no-answer policy is

no answer sse�c� �

P
tk ��xi�tk��xj�tk���c

x�
j �tk�

length�c�

The expected benefit (over the no-answer policy) of using
the model for estimating the xj�tk� values in c is defined as

benefit�c� a� b� � no answer sse�c�� sse�c� a� b�

The cache admission and replacement strategy
will be based on this benefit computation. Let
cshift � f�xi�t��� xj�t���� � � � � �xi�t�� xj�t��g be the
resulting cache-line of the first option and let caug be the
augmented cache line for Nj : caug � c � f�xi�t�� xj�t��g.
Let a��c�, b��c� be the optimal model parameters for the
values of c, see Lemma 1. We use the same notation for
cache-lines cshift and caug . The cache manager evaluates
the benefits of each choice by performing the following
tests in the order they are presented.

� If benefit�caug� a��c�� b��c���benefit�caug� a��cshift��
b��cshift�� and benefit�caug� a

��c�� b��c�� �
benefit�caug� a��caug�� b

��caug�� then the model
produced by the current state of the cache (a��c�� b��c�)
is more accurate than using the models computed from
cshift and caug , for evaluating all available observations
of xj . We therefore reject the new pair �xi�t�� xj�t��.

� If benefit�caug� a��cshift�� b��cshift��� benefit�caug�
a��caug�� b

��caug�� we time-shift the cache-line of Nj

and add the newest observation.

It should be noted that forNj we compute the parameters
a, b of a model (as is described in Lemma 1) but evaluate
them using all known pairs �xi� xj�, including the new ob-
servation �xi�t�� xj�t��. This is why for Nj all benefits are
computed on the values of caug, using the optimal parame-
ters for each setup.

If both tests fail then benefit�caug� a
��caug�� b

��caug��
is larger than benefit�caug� a

��cshift�� b
��cshift��. Thus,

extending the cache line of Nj with the new observation
reduces the error. We will then try to find a victim from
another cache line. The gains of augmenting cache line c
of Nj , over time-shifting its values (that is equivalent to
choosing the victim from c) is

Gain Augmentj � benefit�caug� a
��caug�� b

��caug���

benefit�caug� a
��cshift�� b

��cshift��

For another cache line c� for node Nk �� Nj , the penalty
of evicting the oldest observation of c� is (c�� is c� minus its
oldest pair)

Penalty Evictk �

benefit�c�� a��c��� b��c���� benefit�c�� a��c���� b��c����

We will chose the cache line of the node for which the above
penalty is the smallest, out of those in the cache for which
Penalty Evictk � Gain Augmentj and evict its oldest
pair. If no such victim is found but

benefit�caug� a
��cshift�� b

��cshift�� � benefit�caug� a
��c�� b��c��

time-shifting c is better than rejecting the new pair.
There is a final special case that is worth mentioning. If

xj�t� is the first observation for Nj (i.e. c was empty), then
the gain of augmenting c is Gain Augmentj � xj�t�

� that
can be a large value. This may lead us evict a pair from an-
other cache line. We thus need for a mechanism to prevent
degradation of the models of other nodes because of a newly
observed measurement for which we have no history and
can not predict if it is worth trying to model. Thus, for new-
comers we pick the victim in a round-robin fashion among
all the available cache lines. This protects good models of
small in amplitude measurements, when the available cache
is too small.

The computation of the optimal a��c�, b��c� parameters
for a cache-line c takes time linear in the size of the cache-
line. The same is true for the benefit computations. Thus,
the overall time for this process is linear in the size of the
cache. We can speed-up the computations by having pre-
computed Penalty Evectk for all cache-lines in the cache.
Notice that the benefit and model of c change only when an
action is taken that affects c.

5. Discovery and Maintenance of Representa-
tive Nodes

The sensor nodes make use of the models they main-
tain in order to elect a smaller set of representative nodes
in a localized fashion using a small (up to six) number of
messages per node. The local policy that we employ for re-
ducing the number of representatives is to have a node Nj

choose as its representative the node Ni that can represent
the larger number of nodes in its neighborhood. We then
refine this selection in order to break ties and remove re-
dundant representatives.
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Figure 3. Initial election of representatives

Each node has a status flag that is initially undefined
and can take one of the following two values ACTIV E
or PASSIV E interpreted as follows:

� An ACTIV E node represents a non-empty set of nodes
in the network that includes (by default) itself. Such a
node responds to snapshot queries that involve any node
it this set.

� A PASSIV E node Nj is being represented by another
node Ni in the network. Passive nodes do not respond to
snapshot queries. In case of severe energy constraints,
passive nodes may ask their representative to replace
them on all user queries.

The first step is for each node Nj to broadcast to its
neighbors a special message indicating that it is looking for
representatives (invitation phase, see Table 2). This me-
assage also includes its current value xj�t�. In turn, each
node Ni that hears this message,3 estimates, using its built-
in model the value for �xj�t� and if d��xj�t�� xj�t�� � T ,
it adds Nj to a list Cand nodesi containing nodes it can
represent.

The second step is for node Ni to broadcast list
Cand nodesi. Node Nj receives lists Cand nodesk from
its neighbors and accepts as its representative the one, Ni,
with the longest list. In case two nodes Ni� and Ni� can
represent Nj and their lists are of the same length, we need
for a way to break ties. Assuming that nodes have unique
ids (that can be their MAC address), then without loss of
generality a simple policy is for node Nj to pick the one
with the largest id; i.e. favor Ni� if i� � i�. Finally, node
Nj informs Ni that it accepts him as a representative.

We will demonstrate this process through a small exam-
ple. We consider the nodes in Figure 3. Assume that the
lists that the nodes broadcast in the second step are

Cand nodes� � fN�g Cand nodes� � fg
Cand nodes� � fN�� N�gCand nodes� � fN�� N�� N�� N�g
Cand nodes� � fN�g Cand nodes� � fN�g
Cand nodes� � fN�g Cand nodes� � fg

3This invitation message, as well as any other messages described be-
low, are not propagated to the rest of the network. Thus, there is no re-
transmission cost. In addition we do not assume a reliable bidirectional
communication protocol and messages may get lost.

3
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4

1

876

5

Figure 4. Final election (repr. in dark)

// Rule-0: Break ties
IF (Ni is represented by Nj ) AND (Ni represents Nj )

IF (length(Cand nodesi)� length(Cand nodesj )) OR
((length(Cand nodesi)==length(Cand nodesj)) AND
(i � j))

SET Ni.mode=ACTIVE;
//Rule-1: Nodes that are not represented should stay active
IF (Ni is represented by itself)

SET Ni.mode=ACTIVE;
//Rule-2: Recall redundant representatives
IF (Ni.mode==ACTIVE) AND (Ni is represented by another node Nj)

Notify Nj that it needs not represent Ni

//Rule-3: Requirement for PASSIVE mode
IF (Ni is represented by another node Nj ) AND

(Ni does not represent anyone)
Notify Nj to stay ACTIVE
Wait for Acknowledgment from Nj

a

SET Ni.mode=PASSIVE;
//Rule-4: Clean up
IF (time�� � MAX WAIT ) AND (Ni.mode==UNDEFINED)

IF (rand�� � Pwait)
SET Ni.mode=ACTIVE

ELSE
WAIT(1) //reconsider in next time unit

aInstead of sending individual acknowledgments, it is more effi-
cient that node Nj broadcasts a single message indicating all nodes
it is representing. Lost acknowledgments are handled by Rule-4.

Figure 5. Refining sel. of representatives

Consider node N�. It has two offers from nodes N� and
N�. Since list Cand nodes� is longer than Cand nodes�,
it chooses N� as its representative. In case of node N�, it
breaks the tie between N� and N� by picking the one with
the largest id. In Figure 3 we draw an arrow from node Ni

to Nj , when node Ni is selected to represent Nj at the end
of this step. In this example the initial set of representatives
is N�, N�, N� and N�. This set is further refined through
an additional small round of negotiations among the nodes.
During this phase each node will set its mode flag (that is
initially undefined) to ACTIVE or PASSIVE. The logic that
needs to be installed on every node Ni consists of the five
“rules” shown in Figure 5.

Notice that all information required is already present at
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Phase
#Messages
(per node)

Description

Invitation 1 Each node broadcast its measurement xj�t�

Model Evaluation 1
Node Ni compares �xj�t� against xj�t�
Creates list of nodes it can represent Cand nodesi.
Broadcasts Cand nodesi

Initial Selection 1
Node Nj picks Ni:
length�Cand nodesi� � maxk�Nj�Cand nodesk�length�Cand nodesk��
Nj informs Ni that it (Ni) can represent Nj

Refinement 0-2 Implement Rules-0,1,2,3 and 4. Obtain final selection

Figure 2. Steps in representative discovery

the node. We explain this process in our running example:
Because of Rule-0, nodeN� becomes ACTIVE. Because of
Rule-2, node N� recalls its election of node N�. In turn
Node N� does not represent N� anymore. Because of Rule-
3, nodes N�, N�, N� become PASSIVE. They also notify
N� to stay ACTIVE (it is already so). Because of Rule-
3, node N� becomes PASSIVE and informs N� to be AC-
TIVE. Because of Rule-2, node N� recalls its election of
node N�. Because of Rule-3, node N� becomes PASSIVE
and informs N� to be ACTIVE. Finally, because of Rule-2,
node N� recalls its election of node N�.

The final set of representatives: N�, N� and N� is shown
in Figure 4. All other nodes are marked as PASSIVE. Dur-
ing this process, nodes do not change mode from PASSIVE
to ACTIVE or vise versa. Thus, a node may send at most
two messages because of Rule-2 or Rule-3. As shown in
Table 2, the whole process requires at most five messages
per node.

To handle link failures, or data dynamics that may lead
to circular dependencies, nodes wait a maximum number of
MAX TIME time units to change their mode of opera-
tion from undefined to ACTIVE or PASSIVE. If this does
not happen, then the node decides to stay ACTIVE. In order
to avoid having all such nodes switching to ACTIVE mode
simultaneously, a node that exceeded the MAX TIME

wait period, switches to ACTIVE mode with a probability
Pwait, otherwise is will come back to the same rule in the
next iteration.

5.1. Snapshot Maintenance

An ACTIVE node that only represents itself broadcasts
periodically an invitation message to the network. Simi-
larly, a PASSIVE node Nj that is represented by Ni sends
a heartbeat message to its representative asking for its esti-
mate �xj�t�. If this estimate is out of bounds or nodeNi does
not respond (because of e.g. node failure) then Nj starts
a new discovery process by inviting neighboring nodes to
become its representative. It thus broadcasts an invitation
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Figure 6. Varying number of classes

message, including value xj�t� and changes its mode to un-
defined. The nodes in the vicinity respond as is summarized
in Table 2. The only modification to the protocol is that
node Nj selects its representative by using the length of list
Cand nodesi plus the number of nodes that Ni is already
representing, which number is passed along with the list.
By adding the heart-beat message by Nj and the response
of its representative Ni, the maximum number of messages
during maintenance is six (since i �� j�. In practice, the
actual number of messages is smaller and depends, among
other things, on node density.

Since representative nodes are handling snapshot
queries, in addition to their regular workload, it is expected
that their energy resources will be depleted faster. There
are several ways to address this issue. A representative
node Ni that finds its energy capacity fall below a thresh-
old value, notifies the nodes it represents, who in-turn invite
other nodes to represent them (Ni simply ignores these in-
vitations). Another option is to use randomization in the
selection of representatives, similar to the one used in the
LEACH data routing protocol [8]. The key idea is to have
a rotating set of representatives so that energy resources are
drained uniformly. In Section 6.2 we compare a network
setup that answers snapshot queries against a straightfor-
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Figure 7. Varying message loss Ploss

ward implementation that does not use representative nodes.
We observe that even-though some background messaging
and processing is required for the maintenance of the repre-
sentative nodes, the lifetime of the network is substantially
extended because most network nodes can stay idle during
a snapshot query.

6. Experiments

We have developed a network simulator that allows as
to vary several operational characteristics of the nodes like
their location and transmission range, the probability of a
link failure, the available memory etc. We first present a
sensitivity analysis of our algorithms, varying various pa-
rameters. In section 6.2 we evaluate the savings, in energy
consumption, obtained when using snapshot queries. Fi-
nally, in section 6.3 we show experiments with real weather
data.

6.1. Sensitivity Analysis

We used synthetic data, similar in spirit with the one used
in [5, 13]. The network consists of N=100 sensor nodes,
randomly placed in a �� � � � �� � �� � � � �� two-dimensional
area. For each node, we generated values following a ran-
dom walk pattern, each with a randomly assigned step size
in the range �� � � � ��. The initial value of each node was
chosen uniformly in range �� � � � �����. We then randomly
partitioned the nodes into K classes. Nodes belonging to
the same class i were making a random step (upwards or
downwards) with the same probability Pmove�i�. These
probabilities were chosen uniformly in range ���� � � � �� (we
excluded values less than 0.2 to make data more volatile).

In all runs we let the nodes operate for 100 time-units.
During the first 10 time units, we executed a single query
that was selecting the values from all nodes. This was done
in order for the nodes to broadcast their values and let their
neighbors build appropriate models. We then let the nodes
silent for the next 90 time units and in the end we started
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Figure 8. Varying cache size (K=10)

a representative discovery phase for all nodes, using any
cached values from the first 10% part.We repeated each ex-
periment ten times and present the average values.

In the first experiment we used the following set-up. The
communication range of the nodes was set to

p
�, allowing

each node to listen to all messages in the �� � � � ��� �� � � ���
network area. Furthermore, the probability of message loss
Ploss was zero meaning that network was modeled with-
out any message loss (later-on we modify both parameters).
The cache size on a node was fixed to 2,048 bytes. We used
4-byte floats for representing the values. Thus, a pair of val-
ues in a cache line was using 8-bytes. For a neighborhood of
N=100 nodes, this means that, on the average, a node may
cache between 2 and 3 measurements from another node in
the network.

We varied the number of classes K between 1 and 100
and used a small error threshold value of T=1. In all runs,
we used the sse as our error metric. In Figure 6 we plot the
number of representatives (snapshot size) varying K using
the aforementioned buffer size of 2,048 bytes. For K=1,
when all nodes have the same behavior, the network suc-
cessfully picks a single representative for all 100 nodes.
When the number of classes exceeds 15, the number of
representatives does not increase proportionally but stays
within the range 17-25.

In Figure 7 we repeat the experiment when K=1, vary-
ing the probability of message loss Ploss from 0 to 0.95.
When messages are lost during the first 10 time units, this
affects the ability of a node to build accurate models for its
neighbors. Message loss also affects the representative dis-
covery phase, during which invitations, announcements of
Cand node lists and further negotiations require message
exchange. For message loss of 30%, the network manages
to find a representative set of size four, compared to one in
the perfect communication case. Overall, message loss up
to 80% does not significantly reduce the effectiveness of the
models and the discovery process.

We varied the cache size allocated on a node from 200
bytes to 4KB when the number of classes K is 10. In Fig-
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Figure 9. Varying transmission range

K=1 K=100
Transmission Range Transmission Range

Query Range 0.2 0.7 0.2 0.7

W
�
� ���� 11% 29% 3% 7%

W
�
� ��� 38% 77% 16% 24%

W
�
� ��� 52% 91% 23% 49%

Table 3. Reduction in number of nodes partic-
ipating in a spatial snapshot query

ure 8 we plot the number of representatives using the model-
aware cache manager, versus a simpler round robin imple-
mentation. In this application, the access pattern is a series
of “writes” (=updates to the models) ending with a single
“read” (=discovery phase). Thus, the round-robin policy
is equivalent to FIFO and LRU. For very small cache size,
less than 500 bytes, there is no difference between the two
methods. This is because for such small caches there is typ-
ically one pair per cache line and our algorithm falls back
into using the round-robin policy, as described in Section 4.
For a cache of 1,100 bytes, the number of representatives
computed using the model-aware cache manager is less than
half of that computed using the round-robin policy. When
the cache is larger than 2.5KB, the differences are smaller,
simply because for this data 2 or 3 pairs are enough for a
fairly accurate model, as seen in Figure 6.

In Figure 9 we plot the number of representatives vary-
ing the transmission range of a node from 0.2 up to 1.4 for
several values of K. For the chosen number of nodes (100),
when the transmission range is less than 0.2, it often results
in parts of the network being disconnected, which is unre-
alistic and can be correcting by adding more nodes. We no-
tice that all lines become almost flat when the transmission
range exceeds ���. This is because a range of

p
��� � �����

is enough for sensor nodes located near the center of the
�� � � � ��� �� � � ��� field to snoop on all messages in the net-
work.
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Figure 10. Network coverage overtime
(K=T=1, transm. range=0.7)

6.2. Savings During Snapshot Queries

We first experimented with aggregate queries over ran-
dom parts of the network. For each query a sink node was
chosen randomly. Then, using the flooding mechanism de-
scribed in [11] an aggregation tree was formed, rooted at the
sink node. The sensor nodes Ni whose measures were ag-
gregated using that tree, were chosen using spatial predicate
“loci in �x� W

�
� x� W

�
�� �y� W

�
� y� W

�
�”, where 	x� y�

is a random point in the �� � � � ��� �� � � � �� plane. This is a
2-dimensional range query of area equal to W �.

We created a random set of 200 queries and executed
each query in the set twice: once as a regular query and
once as a snapshot query, see Section 3. We counted the
number of nodes participated in each execution, denoted as
Nregular and Nsnapshot respectively. In Table 3 we show
the savings Nregular�Nsnapshot

Nregular
provided on the average by

the snapshot queries (T=1). We note that when snapshot
queries are used, a non-representative node may still be used
for routing the aggregate and this is included in the numbers
shown. For all runs, the aggregation tree was created using
the vanilla method of [3, 11]. One can modify the protocol
to favor (when applicable) representative nodes for routing
the messages. This will result in further reduction in the
number of sensor nodes used during snapshot queries than
those presented in Table 3.

In Figure 10 we present an attempt to characterize the en-
ergy consumption in a network during regular and snapshot
queries. The initial battery capacity of each node was set
to be equal to the simulated cost of 500 transmissions. For
accounting for energy consumption during computation, we
modeled the processing cost of running the algorithm for
maintaining the cache to be one tenth of the cost of transmit-
ting a message. (This is probably an overestimate. For the
slow-CPU Mica motes, the cost of sending one bit equals
the cost of 1,000 operations [12]. For faster CPUs the ratio
is a lot higher.) We then started executing random spatial
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Figure 11. Varying the error threshold (T)

queries in the network, each of area 0.1. We made two runs.
The first using regular queries and the second with snap-
shot queries. We executed our algorithms for electing and
maintaining the representatives only during the second run.
Thus, for regular queries, the only energy drain on a node
was when responding to a query.

As nodes started draining their batteries and dying, we
tracked the number of node measurements available to the
query over the number of nodes that would have responded
given infinite battery capacity. We call this metric coverage.
For instance, if four nodes are within the spatial filter of the
query and one of them has died, coverage is 75%. For the
same query on the snapshot, the representative of the node
that died might be available and in that case coverage will be
100%. In Figure 10 we notice that for snapshot queries cov-
erage decreases gradually, mainly because representative
nodes are drained faster as they handle a lot more queries.
Coverage is a perfect 100% for regular queries up to the
middle of the run but then it drops abruptly to less than
20%. This is because for non-snapshot queries energy drain
is, roughly, uniform and there is a point when the network
finds most of its nodes depleted. When snapshot queries
are used, the aggregate energy consumption is substantially
smaller. What is important is the area below each curve,
which in the case of snapshot queries is significantly larger.
In this run we used a simple maintenance protocol that re-
placed representative nodes as they died out. As discussed
in Section 5.1, one can use randomization in the mainte-
nance of the representative nodes (using ideas from [8]) to
further improve network lifetime.

6.3. Experiments with Weather Data

For testing our framework on a realistic application we
used weather data, providing wind speed measurements at
a resolution of one minute for the year 2002. The data was
collected at the weather station of the university of Wash-
ington.4 We randomly chose 100 non-overlapping series of

4http://www-k12.atmos.washington.edu/k12
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100 values each from that dataset and used them in our sim-
ulation. The average value (over the 100 series) of the mea-
surement was 5.8 and the average variance 2.8. We again
used the first 10 values for training and ran the represen-
tative discovery phase after the last (100th) measurement.
The cache size was 2,048 bytes and transmission range

p
�.

In Figure 11 we plot the average (over 10 repetitions)
number of representatives n� varying the error threshold T
from 0.1 up to 10. Even for the smallest error threshold (that
is substantially smaller than the variance of the data values)
the models built by the sensors are accurate enough to result
in a snapshot of 14% the size of the network. The average
snapshot size drop quickly with increasing T , down to 1.5%
when threshold is 10. In Figure 12 we plot the average sse
in the estimates provided by the representatives for different
values of T . We observe that the real error is in practice
significantly smaller than the threshold used.

Figure 13 shows the number of spurious representatives
resulting from message loss, when varying Ploss from 0 to
95% (T=0.1, transmission range=0.2). We also show the to-
tal number of representatives. Spurious representatives are
the result of message loss in execution of Rule-2 (Figure 5).
We notice that their number is very small and is in-fact de-
creasing for very high loss rates because most invitations
are lost and fewer invocations of Rule-2 are encountered.
Spurious representatives are easy to detect and can be auto-
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Figure 14. Number of representative nodes
overtime

matically corrected by the network (see Section 3).
For testing updates on the network snapshot we split the

weather data into 100 series of 5,000 data values each. We
updated the network snapshot, as explained in Section 5.1,
every 100 time units. Between updates, we executed ran-
dom queries and configured each node to snoop with proba-
bility 5% messages of its neighbors (at random intervals). In
Figure 14 we plot the snapshot size overtime for two trans-
mission ranges 0.2 and 0.7. For both ranges, it fluctuates
slightly around the average number, 70 and 25 respectively.
In Figure 15 we plot the average number of messages per
node on each update. For the longer range (0.7) there are
more messages, as more nodes respond to an invitation. The
average number is 4.5 and 2 messages respectively, well be-
low the maximum of six discussed in Section 5.1.

7. Conclusions

In this paper we described the operations of a data-
centric network of sensor nodes that provides unambigu-
ous data access for error tolerate applications. The network
maintains a snapshot view, consisting of a small number of
nodes, that captures the most characteristic features of the
data observed. Applications can use the snapshot for their
inquires reducing dramatically the aggregate energy drain.
The snapshot is also useful as an alternative means of an-
swering a posed query when nodes and network links fail.
We presented a detailed experimental study of our frame-
work and algorithms using synthetic and real data. Our al-
gorithms are very robust and effective even when there is
high message loss in the network and very limited resources
at the nodes (memory, radio transmission range).
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