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Abstract—Fast skyline selection of high-quality web services
is of critically importance to upgrade e-commerce and various
cloud applications. In this paper, we present a new MapReduce
Skyline method for scalable parallel skyline query processing.
Our new angular partitioning of the data space reduces the pro-
cessing time in selecting optimal skyline services. Our method
shortens the Reduce time significantly due to the elimination
of more redundant dominance computations. Through Hadoop
experiments on large server clusters, our method scales well
with the increase of both attribute dimensionality and data-
space cardinality.

We define a new performance metric to assess the local
optimality of selected skyline services. By experimenting over
10,000 real-life web service applications over 10 performance
attribute dimensions, we find that the angular-partitioned
MapReduce method is 1.7 and 2.3 times faster than the
dimensional and grid partitioning methods, respectively with a
higher probability to reach the local optimality. These results
are very encouraging to select optimal web services in real-time
out of a large number of web services.

Keywords-Web services; skyline query processing; MapRe-
duce; Hadoop programming

I. INTRODUCTION

In recent years, we see an increasing demand of per-
sonalized web services and cloud computing applications.
Typically, there may be a large number of providers that
respond to the same service request. For example, the search
result of Seekda! 1 may be serviced by one or more out
of 100 weather forecast providers or from 200 stock-query
answering providers. In other words, many providers are
competing for the similar services.

Users demand the quality of service (QoS) in making their
selection of the service. How to select an appropriate or
the best service from many alternative offerings becomes a
major concern from the vast user communities [1][2][3][4].
In another front, the dynamically of web service environment
poses a challenge to the efficiency of QoS-based service
selection [5][6].

Ever since 2001, the skyline operators [7] and their exten-
sions have been advocated for QoS-based service selection
by many authors [8][9][10]. The skyline approach is espe-
cially attractive to achieve optimal or semi-optimal service
selection in a multi-attribute decision-making process. We

1A web service search engine, http://www.webservices.com

have adopted the skyline approach to solving the QoS
problem in several previous works [11][12]. However, two
critical issues are not considered carefully in previous work,
which are important to the generation of QoS-guaranteed
skyline solution in real-life web/cloud service applications.

• Exponential growth of the Skyline complexity in the
selection space. The skyline selection complexity in-
creases exponentially with both the number of attribute
dimensions and the cardinality of the skyline sample
data space. With the blooming of the service industry,
the skyline solution space may become too complex to
optimize in real-time on a conventional computer.

• How to assure the QoS in skyline selected services.
The QoS of selected service may get degraded rapidly,
when the Internet traffic becomes saturated or jammed
with bottlenecks. This may prevent the skyline solution
from achieving the desired level of QoS. The situation
may be compounded badly, if both selection complexity
and network traffic get deteriorated at the same time.

In this paper, we attempt to solve both of the above
problems. We extend the the MapReduce model [13] for
solving the Skyline selection problem on cloud platforms.
The approach is to accelerate the Skyline selection process
by exploring high degree of distributed parallelism in auto-
mated datacenters or public computing clouds.

In this approach, the service search space is first par-
titioned into subspaces, then the local skylines of each
partition are computed in parallel, and the global skyline
services are finally computed by merging all local skyline
choices. It should be noted that a local skyline choice may
not be necessarily globally optimal.

We generate three MapReduce versions of the BNL
(Block Name Label) Skyline algorithm [7], based on three
data space partitioning schemes. Our skyline algorithms
are denoted as MR-Dim, MR-Grid, and MR-Angle in Table
1. Specifically, in MR-Angle, we propose to use a novel
angular partitioning algorithm to divide the data space,
which improves the efficiency of MapReduce based skyline
query process. The Hadoop experiments show that MR-
Angle method is 1.7 and 2.3 times faster than the other
two methods, when the service search space is very large.
Besides the processing time, we propose another metric,
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Table I
KEY PARAMETERS AND MAPREDUCE SKYLINE QUERY PROCESSING ALGORITHMS

Notation Definition and Brief Description
Data Space, S An n-dimensional space of N data points
Skyline Set, Set of skyline data points in the space S
Processing Time, T CPU time to generate the skyline set over the data space S
MR-Dim MapReduce Skyline selection using dimensional partition over S space
MR-Grid Grid-partitioned MR Skyline selection using grid partition
MR-Angle Angular partitioned MR Skyline selection using the angular partitioning

optimality of local skyline selection, to evaluate the QoS of
local skyline services in different partitions. The MR-Angle
outperforms the other two methods in terms of local skyline
optimality.

In particular, the main contribution of this paper is sum-
marized as follows:

1) We extend the MapReduce application to select opti-
mal web services with QoS assurance.

2) A novel angular partitioning algorithm is adopted in
skyline query processing

3) Report large-scale MapReduce skyline benchmark ex-
perimental results on large clusters over large web-
service datasets.

For the convenience of our readers, Table 1 summarizes
important notations and algorithms used in this paper. No-
tations for three MapReduce skyline methods are given.

The rest of the paper is organized as follows: Section 2
presents the background of Skyline selection process for web
services, and the MapReduce model specially-tailored for
skyline query processing. Section 3 specifies three MapRe-
duce skyline algorithms including our new method. Section
4 analyzes the complexity of our new angular-partitioned
MapReduce method. Section 5 presents the experimental
setting and reports Hadoop experimental results obtained.
The analysis and evaluation of the optimality of local skyline
selection is given in Section 6. Finally, we summarize
our technical contributions and make some suggestions for
further research challenges that can be extended from this
work.

II. MAPREDUCE SKYLINE QUERY PROCESSING

In this section, we introduce skyline query and describe
how to link the skyline approach to solving the problem
of QoS-based web service selection. Given a set Q of data
points in d-dimensional QoS space, each dimension repre-
sents a performance attribute with values properly ordered.
The lower-valued points are better than the higher-valued
ones. A data point Pj is dominated by Pi , if Pi is better
than or equal to Pj in all dimensions. Furthermore, Pi must
be better than Pj in at least one dimension [8].

Given two services represented by two service data points
s1 and s2 in the QoS space Q. The service s1 dominates

S1 

S2 

S3 

S4 

S5 S6 
S7 

S8 

C
o

st
 (

$
) 

Response Time (Sec) 

Figure 1. A 2-dimensional data space, where the skyline choices along
the contour have lower service cost and shorter response time, compared
with all service points in either attribute dimensions

service s2, if s1 is better than or equal to s2 in all attribute
dimensions of the space Q. Furthermore, s1 must be better
than s2 in at least one attribute dimension of Q. The subset
S of services form the skyline in the QoS space Q , if all
service points on the skyline are better than or equal to other
services along all attribute dimensions in the space Q. In
other words, all skyline services are not dominated by any
other service in space Q.

Figure 1 shows a 2-dimensional QoS space Q consisting
of many service data points. Each service is characterized
by two performance attributes: namely the response time (x-
axis) and the service cost (y-axis). The coordinate of each
data point corresponds to the pair of values: (response time,
service cost) of a particular service.

For example, the service point s3 is a skyline point denot-
ed by shown by solid circles, because it is not dominated by
any other service points. Thus s3 has shorter response time
and lower cost than all service points to its right or above
s3 in the Q space. Similar superiority can be established to
qualify other skyline services. Thus, we obtain the skyline
set S = { s1, s2, s3, s4, s5, s6, s7}.

In general, we should expect the relationship S � Q.
Many of the non-skyline or unselected data points are
towards the upper right corner of the 2-D space. This process
essentially needs to compare all data points in a pairwise
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Figure 2. MapReduce model for computing skyline tasks to achieve
optimal QoS selection

fashion. When the QoS space Q is very large, this is a
very time-consuming process. That is why we need parallel
comparison in a MapReduce cluster or cloud.

All hollow circles in Figure 1 are non-skyline service
points. In particular, we show that service s8 is not a skyline
service, because it is dominated by services s2, s3, s4, and
s5 along the x-axis and s8 has no competitors along the
y-axis. The Skyline is visualized by linking lines among
the selected data points in set S. Usually, the skyline is a
contour at the lower left corner of the data space Q towards
the origin.

Inspired by distributed parallel processing, we propose
to apply MapReduce technology to upgrade the computing
efficiency with scalable performance in large-scale Skyline
query processing. We propose a variant of MapReduce
approach by adding a process between Map and Reduce.
The idea is shown in Figure 2 in 3 steps.

1) The Map Process. The service data points are parti-
tioned by the master server (e.g. UDDI) into multiple
data blocks based on the QoS demand. The data blocks
are dispatched to many slaver servers for parallel
processing.

2) Local Skyline Computation. This process is used to
generate the local skylines from service data points in
subdivided data blocks.

3) The Reduce Process. In this process, local skylines
generated by all slaver servers are merged and integrat-
ed into a global skyline, which applies to all services
being evaluated.

The MapReduce skyline model handles the pairwise eval-
uation of existing services and the addition of new services.
Given a new service which is added into UDDI, traditional
approach has to compute the global skyline again. With the
MapReduce approach, the new service is first mapped into

a group and added into the local skyline computation. Then
all local skylines are integrated into the global skyline at the
Reduce stage.

In other words, we only need to compare the new service
with the services in a subdivided group. Specifically, the
number of local skyline services is largely smaller than
the one of services in UDDI. If the number of services
for skyline computation becomes too large, the MapReduce
solution can be even applied iteratively using the Twister
HLL language support [14].

A. Mapping of Partitioned Skyline Tasks
Given a set of N slave servers, the quality of the selected

skyline services depends on the efficiency of the local
skyline computation and the performance of the integration
process. Thus, the efficiency and QoS of the MapReduced
skyline process depends mainly on how to explore the
distributed parallelism among the N servers, to accelerate
the Map stage.

The efficiency of the mapping depends on data space
partitioning. The service data points are partitioned into
divided regions. The goal is to achieve load balancing, to fit
into the local memory, and to avoid repeated computations
when old services are dropped and new services are added
dynamically.

B. Merging in Reduce Computations
Before the process of Reduce, we introduce a middle

process (local skyline computation) at Step 2. The reason is
that computing skyline services is expensive if the number
of candidate services is extremely large. By introducing the
middle process, only local skyline services are delivered to
the Reduce process at step 3. This will decrease largely the
number of services to be processed at the Reduce stage.

For instance, the local skyline services in Figure 3 involve
only {s1, s2}, {s3}, {s4, s5}, and {s6, s7}, respectively.
This requires only a small percent of all services in the
entire data space. Meanwhile, the computing efficiency of
skyline services is significantly improved by computing local
skyline services in parallel. We choose the BNL algorithm
[7] at Step 2 for its simplicity. In Reduce process, we merge
all local skyline services and prune the dominated skyline
services to get the global skyline services.

III. ANGULAR PARTITIONING OF SKYLINE DATA
SPACE

Three MapReduce skyline algorithms are given below
based on the three data partitioning schemes. The MR-
Dim Algorithm is the simplest one to implement, based on
one-dimensional partitioning [15]. The MR-Grid Algorithm
is based on grid partitioning, which was first introduced
by Wang, et al [16] and Wu, et al [17], separately. The
MR-Angle method is a new MapReduce Skyline method
first-time proposed here using the angular partitioning as
demonstrated in Figure 3(c).
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(a) Dimensional partitioning for MR-Dim
method
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(b) Grid partitioning for MR-grid method
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(c) Angular partitioning for MR-angle method

Figure 3. Three data space partitioning methods for three MapReduce skyline query processing schmes

A. MR-Dim Skyline Algorithm

The MR-Dim algorithm contains two stages: (1) Parti-
tioning Job, in which we divide the data space into some
disjoint subspaces and compute the local skyline of each
subspace; 2) Merging Job, in which we merge all local
skylines to compute the global skyline. Empirically, the
number of partitions is set as (2 × number of nodes) in
the MR-Dim algorithm.

Specially, in the process of implementation, the range of
each partition in dimension d is equal to Vmax

Np
, where Vmax

is the maximum value in dimension d, and Np is the number
of partitions. After data space partitioning, the local skyline
of each partition is computed using BNL algorithm. In the
Merging job, all local skyline services are given the same
key in the Map process, while they are merged to compute
the global skyline in the Reduce process.

In MR-Dim, only the QoS parameter values in one
dimension are used to do the partitioning [11]. For example,
we separate the data space into 4 blocks according to the
response time of each service. This approach is easy to
implement, while the redundant computations still exist in
this case. In addition, this method needs to balance load in
the Reduce process.

B. MR-Grid Skyline Algorithm

Different from MR-Dim algorithm, multi dimensions are
utilized to partition space in MR-Grid algorithm. In the
simplest case, two dimensions are utilized (e.g., response
time, and cost), and the 2-dimensional data space is divided
into 4 partitions by setting the range of partition in each
dimension is the half value of the maximum one.

In MR-Grid, there are dominance relationships between
partitions. For example, the bottom-left partition dominates
the up-right partition in the above simple case, as all services
in the up-right partition are dominated by any service in the
bottom-left partition. Therefore, we do not have to compute
the local skyline of the up-right partition in Step 2, i.e., Local
Skyline Computation.

In this case, the efficiency of step 2 is improved 25%.
However, as the comparability decreases with the increase
of the dimension, the improvement of MR-grid in step 2 is
limited when the number of dimension is large. When the
number of dimension reaches 10, the improvement is even
less than 11.08% [18].

C. MR-Angle Skyline Algorithm

In this paper, we propose a new angular partitioning
method shown in Figure 3. Apparently, this angle-based par-
titioning reduces many redundant computations and balances
the workload, because each subdivided data block involves
both high-quality and low-quality data points in the data
space.

For instance, each partitioned block (an angular sector)
involves some global skyline services: {s1, s2},{s3},{s4,
s5}, and {s6, s7}. The angular partitioning process contains
two steps: (1) Mapping the Cartesian coordinate space into
a hyperspherical space and (2) Dividing the data space into
N sectors according to the angular coordinates.

Consider an n-dimensional QoS data space. The cartesian
coordinates of a service is represented by a vector s = {v1,
v2, . . ., vn} , where vi refers the value of s in the ith

attribute dimension. The hyperspherical coordinate of the
service s is specified by a radial coordinate r and (n-1)
angular coordinates {ø1, ø2, . . ., øn−1} as follows:

r =
√

v2n + v2n−1 + . . . + v21

tan(ø1) =

√
v2n + v2n−1 + . . . + v22

v1
. . .

tan(øn−2) =

√
v2n + v2n−1

vn−2

tan(øn−1) =

√
v2n

vn−1
(1)
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We divide the data space into N sectors by utilizing the
angular coordinates øi. We modify the grid partitioning over
the n-1 subspaces defined in Eq.(1). For the 2-dimensional
data space in Figure 3, a point s=(x, y) is expressed by

r =
√
x2 + y2, tan(ø) =

y

x
(2)

Algorithm 1 MR-Angle for Skyline Query Processing
Input: the original data set S
Output: the skyline of S

1: // Generation of local skyline points within each parti-
tioned subspace

2: for all service sn in dataset S do
3: compute the coordinates of sn using Eq.(1)
4: compute the partition Pi that sn belongs to based on

the service sn’s coordinate value
5: output (Pi, sn)
6: end for
7: for all partitioned sectors Pi do
8: compute local skyline LSi using BNL
9: output (Pi,LSi) in file st

10: end for
11: // Merging of Many Skyline subsets
12: for all service si in file st do
13: output(null,si)
14: end for
15: compute the global skyline GS using BNL
16: output(GS)

The hyperspherical coordinate is used in the Map process
at Step 1. The Cartesian coordinate is used in the local
skyline computation at Step 2 and in the Reduce process
at Step 3. Different from MR-Dim and MR-Grid algorith-
m, the original Cartesian coordinate-based data should be
transformed into hyperspherical coordinate-based data in
MR-Angle Algorithm (line 3). The detailed transforming
equation is as Equation(1) shows. After getting the hyper-
spherical coordinate-based data, we get divide the data space
according to the angle values of each service (line 4). The
local skyline of each partition is then computed by using
BNL method (line 7-10). Finally, we merge all local skylines
to compute the global skyline (line 12-15).

IV. COMPLEXITY ANALYSIS OF ANGULAR MAPREDUCE
SKYLINE METHOD

In this section, we analyze the complexities of MR-Grid
and MR-Angle algorithms. As Fig.4 shows, service s4 is the
nearest one to the axes. It can be shown that the first nearest
neighbor, i.e., s4 , is part of the skyline. On the other hand,
all the points in the dominance region of s4 (gray region)
can be pruned from further consideration. In this way, the
dominated region is pruned, and the first skyline service s4
is selected. Then, the left regions are computed recursively.

The dominance ability of skyline services is critical to
the efficiency of skyline computation. For example, if the
dominance ability of s4 is stronger, more services will be
pruned, which leads to higher efficiency. Therefore, domi-
nance ability is selected as the evaluation metric of algorithm
complexity. The dominance ability of skyline service si is
defined by the ratio Dsi =

Numsi

Numall
, where Numsi is the

number of services dominated by si, and Numall means the
number of all services. In this paper, to make the compari-
son between two algorithms more intuitive, the dominance
ability of si is defined by the ratio Dsi =

Areasi

Areaall
, where

Areasi is the area dominated by service si in the partition
that si belong to, and Areaall is the area of the partition
that si belongs to.

C
o

st
( 

$
) 

Response Time (s) 

(x , y) 

2L 

2L 

D_angle 

D_grid 

Figure 4. MR-Grid and MR-Angle partitioning

In Fig.4, we compare MR-Grid and MR-Angle approach
to divide the data space into 4 partitions, respectively. The
data space is a square with 2L long sides. The area of the
overall data space is 4L2 , while the area of each partition
is L2. Given a skyline service s with coordinate (x,y), and
it belongs to the partition close to the axes as the most case.

Theorem 1: If MR-Angle approach is employed to do
partition, the dominance ability of service s is as follows:

Dangle
s =

L2 − x2

4 − (2L− x)y

L2
(3)

Proof: The dominance region of service s is the gray
region if MR-Angle is employed. The area of the gray region
can be computed by using the area of a partition to subtract
the area of non-dominance regions. It can be presented as
L2− x2

4 −(2L−x)y. And the area of partition that s belongs
to is still L2 while using MR-Angle approach. Therefore, the

dominance ability is L2− x2

4 −(2L−x)y

L2 .
Theorem 2: The dominance ability of MR-Angle outper-

forms the MR-Grid method by the following quality:

∆D = Dangle
s −Dgrid

s ≥ x

2L2
(L− x

2
) (4)

Proof: Similar to Theorem 1, the dominance of MR-
Grid method is (L−x)(L−y)

L2 . To compare the dominance
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Figure 5. Processing time of angular MapReduce Skyline method against the dimensional and grid portioned methods

ability of MR-Grid and MR-Angle, we introduce another
symbol ∆D which is presented as Dangle

s −Dgrid
s . Because

y ≤ x
2 ,we have

∆D =
L2 − x2

4 − (2L− x)y

L2
− (L− x)(L− y)

L2

=
1

L2
(−x2

4
− yL + xL)

≥ 1

L2
(−x2

4
− x

2
L + xL)

=
x

2L2
(L− x

2
)

From Theorem 2, the dominance ability of MR-Grid
approach is always weaker than the one of MR-Angle ap-
proach. This result is also the same in high-dimensional case.
Therefore, we can draw the conclusion that the performance
of MR-Angle approach is better than MR-Grid approach.

V. HADOOP EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of three
MapReduce based skyline algorithms which are used for
skyline services computation. Then, the scalability of our
proposed MR-Angle method is evaluated.

A. Experiment Setup and Evaluation Metrics

We have conducted our experiments based on one
real dataset. It is based on the QWS (details in
http://www.uoguelph.ca/∼qmahmoud/qws/index.html)
dataset [19], which comprises measurements of nine QoS
attributes over 10,000 real-world Web services. The majority
of Web services were obtained from public sources on the
Web including UDDI, search engines and service portals.

Considering the rapidly development of Web services, we
extend the size of QWS dataset by randomly generating QoS
values which are limited to a narrow range following the

distribution of the QWS dataset. The number of services
is finally extended to 100,000 and 10 QoS attributes are
selected for our experiments.

All experiments are implemented in Java, and the MapRe-
duce related experiments are run on Hadoop 0.20.2 frame-
work. Specifically, each server has a Intel Core Duo E7400
2.99GHz CPU, 3.25G main memory, with Ubuntu 10.9 OS
and 1G memory allocated to JVM.

To study the performances of MapReduce based skyline
algorithms for skyline services computation, we evaluate
three different approaches:

• MR-Dim: MR-Dim skyline algorithm is adopted in
this approach, details in Section 3.1. The implementa-
tion of MR-Dim can be found in [11].

• MR-Grid: Grid-based skyline algorithm is adopted in
this approach.

• MR-Angle: Angle-based algorithm (Algorithm 1) is
adopted in this approach. The difference among the
above three approaches is mainly the partitioning ap-
proach.

B. MapReduce Skyline Query Processing Time

Figure 5 shows the processing time used for selecting
the optimal or suboptimal skyline services, as the service
cardinality (the number of candidate services) changes from
rather small (1,000 in Fig5.(a)) to very large (100,000 in
Fig.5(b)). In both cases, the attribute dimension (the number
of QoS attributes being considered) increases from 2 to 10.

Figure 5(a) shows the results of three methods over 1,000
service choices. The processing times of the MR-grid and
MR-dim methods are 6 ∼ 16% and 18 ∼ 45% higher,
respectively, than using the MR-angle method. The other
two methods increase rather flatly (within 12%), as the
dimension increases. The MR-angle method shows at most
20% increase in processing time as more dimensions are
involved in the evaluation process.

226122612267
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The advantage of MR-Angle increases much more
sharply, as the cardinality increases to 100,000 services.
As plotted in Fig 5(b), the MR-Angle method outperforms
the the MR-grid method with 2% ∼ 170% reduction in
processing time as the dimension increases from 2 to 10.
The MR-dim method performs the worse with 3% ∼ 230%
longer processing times than using the MR-angle method as
the dimension increases.

In summary, with a large service cardinality of 100,000
and higher dimension of 10 attributes, our MR-angle method
performs 1.7 and 2.3 times faster than using the MR-grid and
MR-dim methods, respectively. These results clearly demon-
strate the advantage of our MapReduce skyline method
using the angular partitioning of a large data space over
10 attribution dimensions.

C. Breakdown of Processing Times in Map and Reduce
Operations - Result on the Scalability

The number of servers used does affect the cluster perfor-
mance greatly. We consider a large data space of 100,000
service data points. There are 10 dimensions of performance
attributes. The server cluster used increases from 4 to 8, 12,
16, 20, 24, 28 and 32 servers. Figure 6 shows the processing
time of the MR-Angle method plotted against the increase
of servers used.

The processing time decreases sub-linearly with respect to
more servers used. When the number of servers exceeds 24,
the speedup improvement becomes saturated gradually. This
processing time consists of mainly two parts: the Map Time
and Reduce Time. The Map time reduces almost flatly with
more servers used. The Map time doest get some speedup
with more servers used. In other word, as more servers are
used, the drop in Map time contributes the most to the
scalability of the MR-angle method.

Compared with 4 servers used, the processing time is
reduced only 10%, when 8 servers are used. The processing
drops from 230 sec to 130 sec with 70% improvement
as the number of servers used increases from 4 to 32.
The sectioned bar diagram in Figure 6 clearly shows the
scalability of using the MR-angle method to accelerate the
Reduce process in skyline selection of optimal web services.
The advantage increases with larger data space and more
attribute dimensions adopted.

VI. OPTIMALITY OF LOCAL SKYLINE SELECTION

The major reduction in query processing time comes from
lowering the Reduce time in our MR-angle method. The
Reduce time is consumed mainly from merging the local
skylines in various partitions to become the global skyline
choices. In a given partition, if most local skyline services
are also globally optimal, that partition is considered very
efficient or effective in finding the optimal web service. We
define a local skyline optimality to express the percentage
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Figure 6. Breakdown of the processing time of MapReduce-angle method
against increasing number of servers used in skyline selection of optimal
services out of 100,000 web services

of skyline services selected locally that are also qualified as
a skyline selection in the global data space.

LocalSkylineOptimality =
1

N

∑
1<i<N

|skyi
⋂
skyglobal|
|skyi|

(5)
where the skyi means the set of local skyline services in

the partition, and the skyglobal means the set of global sky-
line services. As the distribution of global skyline services
in different partition is different, we use the average value
of each partition to reflect local skyline optimality.

Figure 7 shows the local skyline optimality of three
MapReduce skyline methods. The higher is the optimality
fraction, the better is the performance towards optimal
choice. Figure 7(a) shows the experiment result over a
small cardinality of 1,000 services, while the cardinality of
dataset in Fig. 7(b) is 100,000. In general, the local skyline
optimality of all three methods increases with the increase
of dimension (the. number of QoS attributes), because
the increase in dimensionality decreases the comparability
between service pairs.

In Fig. 7(a), the local skyline optimality of MR-Angle
outperforms MR-Grid and MR-Dim in all dimensions. The
local skyline section optimality of MR-Angle achieves the
maximum value 0.61 meaning 61% local skyline services
are also the globally optimal. Again the MR-Dim method is
the lowest in reaching optimality. The MR-grid method is
only slightly better then the MR-Dim method. In Fig.7(b),
the gaps between MR-Angle method and the other two are
even greater.

VII. CONCLUSION

Skyline query processing is often used in database op-
eration or in finding optimal web services with guaranteed
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Figure 7. The optimality of three MapReduce methods for Skyline query processing

QoS. However, the process is very time consuming when the
service data space is very large with too many performance
attributes to be evaluated. In this paper, we propose a new
angular partitioning method to apply the MapReduce model
for fast Skyline selection of optimal web services.

Our MapReduce angular method scales well with the
increase of both attribute dimensionality and data-space
cardinality. The newly defined performance metric is very
powerful to assess the local optimality of selected skyline
services. By experimenting over 10,000 real-life web service
applications in 10 attribute dimensions, we find that the
angular-partitioned MapReduce method is 1.7 and 2.3 times
faster than the dimensional and grid partitioning methods,
respectively.

Our method has a 60% higher probability to reach the
local optimality than the other two methods. These results
are very encouraging to select optimal web services in real-
time out of a large number of web services. Our improved
MapReduce skyline method is also applicable to cloud
service application, which is under extended work by our
joint research team at Zhejiang University and University of
Southern California. The new MapReduce skyline algorithm
and reported results are very encouraging to enable cloud
computing and mashup services in real-time out of a large
number of web services.
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